墩頭高度H=6mm,材質Q235,材料的屈服極限取值σS=235MPa,鉚頭的每轉進給量,初取S=,擺碾角α取值為4°,材料強化增大系數Δ=,擺碾摩擦系數μ取。代入式(1)~式(3)得:電機功率[9,11]選取則是根據鉚接力的大小而定,如式(4)、式(5)所示。式中:Q—指相對進給率;N—擺頭轉速,初取值600r/min;η—傳動系統效率η=,初取。代入式(4)、式(5)計算得到:查找相關資料,考慮實際生產需要,采用電機型號YE3-132S-6的鉚接動力頭,選取主軸電機功率P=3kW,轉速n=600r/min的電機,效率η=,經檢驗其輸出的鉚接力F大小:滿足使用要求。針對不同大小鉚釘以及鉚接所需要的形狀,只需要更換鉚接頭即可,鉚接頭套入到動力頭中,能滿足不同生產的需求。鉚釘找正原理及機構設備特點是采用傳感器進行鉚釘位置找正,能夠確保鉚接前鉚頭與鉚釘的中心對齊,從而得到良好的鉚接效果。鉚釘找正機構的原理:以Z方向找正為例,設鉚釘直徑為d,鉚頭中心與工作狀態(tài)下接觸探頭邊界的距離為H,H的值在設計設備的時候已經給定。當探頭觸碰到鉚釘時,兩者之間數值關系,如圖5所示。此時鉚頭與鉚釘中心偏差。美國 HUCK99-6001鉚槍頭?電動HUCK99-6001鉚槍頭BOM-R16
呈現出***的類解理河流花樣及滑移特征,屬疲勞裂紋擴展區(qū).圖7b區(qū)域可觀察到少量疲勞條帶及一定數量的韌窩,為混合斷口形貌,屬疲勞裂紋高速擴展區(qū),即**終斷裂區(qū).而對于圖7a左側白色方形標注區(qū)域,其微觀形貌具有明顯的撕裂棱和微孔特征,屬典型的韌性斷裂.由此可斷定,TAS接頭由于鉚釘硬度提高,鉚釘墩粗現象減輕,接頭的薄弱部位下移至接頭底部;TAS接頭裂紋萌生于底部薄弱區(qū)域,首先沿板寬方向進行擴展出現疲勞斷裂,隨后反向延伸至另一側發(fā)生韌性斷裂.圖6TAF接頭下板斷裂試樣SEM分析,其失效試樣的SEM圖像如圖8所示.ATF接頭下板宏觀斷口圖像如圖8a所示,可見下板大變形部分幾乎完全斷裂,與TAF接頭的下板斷裂部位相似.由圖8c可見大變形區(qū)域斷口表面較為光滑平整,為疲勞源區(qū)特征.圖8a白色方形標注區(qū)域的微觀形貌特征如圖8d所示,斷口上分布著散亂的疲勞條帶,且處于不同高度不同方向平面上,屬疲勞斷裂的基本特征.而圖像8b區(qū)域靠近基板邊緣,微觀形貌具有明顯的撕裂棱及微孔特征,屬韌性斷裂.由此可推斷,因下板斷裂失效的ATF接頭,其下板大變形區(qū)域因承受持續(xù)疲勞載荷而萌生疲勞裂紋并沿板寬向兩側擴展,一側為疲勞斷裂,而另一側靠近邊緣區(qū)域為韌性斷裂失效。短尾HUCK99-6001鉚槍頭2628美國 HUCK99-6001 鉚槍頭;
將塑性好的材料放在下層;鉚接金屬與非金屬材料時,將金屬材料放在下層。相對于其他連接技術(如點焊、鉚接等),自沖鉚接技術有如下優(yōu)點:適于外觀檢查質量;防水性、氣密性好;可以連接多層材料;無需預先鉆孔,一次成型;可以連接金屬和非金屬材料;沒有熱應力集中,不會破壞材料表面鍍層;動態(tài)疲勞強度高,遠遠優(yōu)于點焊等傳統薄板連接工藝。針對該應用系統,FANUC提供了R-2000iC/210F和R-2000iC/270F兩種型號的機器人。R-2000iC/210FR-2000iC/270FR-2000iC/210F機器人,負載210kg,工作半徑2655mm,重復定位精度±;R-2000iC/270F機器人,負載270kg,工作半徑2655mm,重復定位精度±。兩者均屬于高負載中型機器人,采用高剛性手臂,可靠性高,運動靈活,另可用于搬運、點焊、機床上下料等多種應用。
徑向鉚接機自沖鉚接機旋轉工作臺數控鉚接機徑向鉚接機|旋鉚機采用先進的普通鉚接技術,鉚釘材料沿直徑方向變形形成與工作載荷相切的纖維質流提高載荷能力。自沖鉚接機也稱之為自沖鉚,自刺穿鉚接機,鎖鉚,SPR-SelfPiercingRiveting,自沖鉚***,自沖鉚鉗,自沖鉚設備采用數控分度盤的數控鉚接機采用數控分度盤的程控鉚接機是新一代鉚接機型。該機鉚接直徑為9mm,采用二軸程序控制配以...龍門數控鉚接機(龍門鉚接機)氣液增壓無鉚釘數控鉚接機旋鉚式無鉚釘數控鉚接機龍門鉚接機或龍門數控鉚接機是為適應大尺寸零部件的自動化鉚接要求而設計制造的,其設計有伺服控制系統,三維移動系統,可自動完成范圍內不同高度鉚釘的鉚接要求氣液增壓無鉚釘數控鉚接機是新一代無鉚釘鉚接機型。該機可設計鉚接厚度為8mm,采用X軸單軸程序控制配以Z軸的氣液增壓...無鉚釘數控鉚接機是新一代鉚接機型。該機可設計鉚接厚度為5mm,采用三軸程序控制...自動送料數控鉚接機數控自沖鉚接機數控旋鉚機滾邊機翻邊機自動送料數控鉚接機是新一代自動鉚接機型。該機結合了自動送料鉚接機不用裝配的特點和程控鉚接機***律運作的優(yōu)勢,是一臺真正...數控自沖鉚接機是將自沖鉚接機安裝于數控平臺設備上。HUCK99-6001鉚槍頭 哪家好;
3)Tu?Tn還受其他參數的影響?結合表1和圖3可以發(fā)現,第5組的凹凸模間隙是1mm,為中間數值,但鑲嵌量Tu也相對較小,說明Tu不僅受凹凸模間隙的影響,而且還受其他參數的影響,只是凹凸模間隙對Tu影響較大;同樣,第7組的凸模圓角半徑雖然較小但Tn較大,說明Tn不僅受凸模圓角半徑的影響,而且還受其他2個參數的影響,影響程度還需進一步分析?用極差法分析工藝參數對接頭強度的影響模擬接頭成形過程完成以后,繼續(xù)模擬接頭的拉伸破壞過程[9],具體是對成形后的接頭上板施加位移載荷,使上?下板之間發(fā)生相對運動,直到接頭失效為止?該過程通過得到上板參考點的約束反力來衡量接頭抗拉伸的力學性能?鉚接接頭失效一般有脫離失效和斷裂失效2種方式,此次9組模擬的結果均為脫離失效?***仿真得到的接頭所能承受的比較大拉伸力和其他指標見表2所列?其中,Fmax為接頭比較大軸向抗力(簡稱接頭力學性能)?此外,按正交表各列計算得到的Ⅰ?Ⅱ?Ⅲ力學性能的差異,反映了各列所排因素(工藝參數)取不同水平時對接頭力學性能的影響?表2中,R**極差?分析表2中的仿真數據,得出如下結論:(1)各參數對接頭力學性能的影響?由表2可知,第4列極差比較大。美國HUCK99-6001鉚槍頭 沃頓供;短尾HUCK99-6001鉚槍頭2628
美國哈克99-6001鉚槍頭哪家;電動HUCK99-6001鉚槍頭BOM-R16
當傳感器的接觸探頭觸碰到鉚釘時伺服電機停止運動,鉚釘找正機構退回到安全位置后,伺服電機再次啟動帶動動力頭運動,從而消除鉚頭中心與鉚釘中心之間的距離,伺服電機停止運動,鉚頭伸出,完成鉚接工作。當鉚接工作完成時,鉚頭回到初始位置,轉動軸承,依次進行下一個鉚釘鉚接,直至全部鉚釘完成鉚接。圖2總體結構方案OverallStructureScheme鉚接機的機械結構特點:(1)采用臥式雙頭鉚接結構,提高生產效率,降低成本;(2)設備靈活的定位夾緊系統,能應對多型號大軸承的生產,滿足多種產品的要求;(3)鉚釘找正機構的設計,保證鉚接更加精細。鉚接過程的流程圖,如圖3所示。圖3鉚接流程圖FlowChartofRiveting主要結構設計及相關計算鉚接力大小及動力頭的選型動力頭是鉚接機的**部件,鉚接往復運動、鉚接壓力及鉚接軌跡的形成,均由動力頭來實現。動力頭的旋轉采用三相異步電動機做動力驅動,電機通過聯軸器將運動傳遞給主軸,主軸通過少齒差行星機構將運動傳遞給球面運動副;同時液壓系統驅動活塞連同球面副向下施壓,當鉚頭接觸到鉚釘時,鉚頭圍繞鉚釘中心線(即主軸中心線)對鉚釘進行無滑動碾壓,達到鉚接效果[8]。動力頭的選取考慮的主要因素是鉚接力的大小。電動HUCK99-6001鉚槍頭BOM-R16
上海沃頓實業(yè)有限公司在五金、工具這一領域傾注了無限的熱忱和激情,上海沃頓一直以客戶為中心、為客戶創(chuàng)造價值的理念、以品質、服務來贏得市場,衷心希望能與社會各界合作,共創(chuàng)成功,共創(chuàng)輝煌。相關業(yè)務歡迎垂詢。