影響磁控濺射鍍膜結果的因素:1、濺射功率的影響,在基體和涂層材料確定的情況下,工藝參數(shù)的選擇對于涂層生長速率和涂層質(zhì)量都有很大的影響.其中濺射功率的設定對這兩方面都有極大的影響。2、氣壓的影響,磁控濺射是在低氣壓下進行高速濺射,為此需要提高氣體的離化率,使氣體形成等離子體。在保證濺射功率固定的情況下,分析氣壓對于磁控濺射的影響。磁控濺射鍍膜的產(chǎn)品優(yōu)點:1、幾乎所有材料都可以通過磁控濺射沉積;2、可以根據(jù)基材和涂層的要求縮放光源并將其放置在腔室中的任何位置;3、可以沉積合金和化合物的薄膜,同時保持與原始材料相似的組成.磁控濺射鍍膜的產(chǎn)品特點1、磁控濺射所利用的環(huán)狀磁場迫使二次電子跳欄式地沿著環(huán)狀磁場轉圈.相應地,環(huán)狀磁場控制的區(qū)域是等離子體密度較高的部位。直流二極濺射采用直流光放電,三極濺射采用熱陰極支撐光放電。北京專業(yè)磁控濺射技術
物相沉積技術是指在真空條件下采用物理方法將材料源表面氣化成氣態(tài)原子或分子,或部分電離成離子,并通過低壓氣體過程,在基體表面沉積具有某種特殊功能的薄膜的技術,物相沉積是主要的表面處理技術之一。PVD鍍膜技術主要分為三類:真空蒸發(fā)鍍膜、真空濺射鍍膜和真空離子鍍膜。物相沉積的主要方法有:真空蒸鍍、濺射鍍膜、電弧等離子體鍍膜、離子鍍膜和分子束外延等。相應的真空鍍膜設備包括真空蒸發(fā)鍍膜機、真空濺射鍍膜機和真空離子鍍膜機。隨著沉積方法和技術的提升,物相沉積技術不只可沉積金屬膜、合金膜、還可以沉積化合物、陶瓷、半導體、聚合物膜等。物相沉積技術早在20世紀初已有些應用,但30年迅速發(fā)展成為一門極具廣闊應用前景的新技術,并向著環(huán)保型、清潔型趨勢發(fā)展。在鐘表行業(yè),尤其是高級手表金屬外觀件的表面處理方面達到越來越為普遍的應用。山西金屬磁控濺射方案高能脈沖磁控濺射技術是利用較高的脈沖峰值功率和較低的脈沖占空比來產(chǎn)生濺射的一種磁控濺射技術。
磁控濺射概述:濺射是一種基于等離子體的沉積過程,其中高能離子向目標加速。離子撞擊目標,原子從表面噴射。這些原子向基板移動并結合到正在生長的薄膜中。磁控濺射是一種涉及氣態(tài)等離子體的沉積技術,該等離子體產(chǎn)生并限制在包含要沉積的材料的空間內(nèi)。靶材表面被等離子體中的高能離子侵蝕,釋放出的原子穿過真空環(huán)境并沉積到基板上形成薄膜。在典型的濺射沉積工藝中,腔室首先被抽真空至高真空,以較小化所有背景氣體和潛在污染物的分壓。達到基本壓力后,包含等離子體的濺射氣體流入腔室,并使用壓力控制系統(tǒng)調(diào)節(jié)總壓力-通常在毫托范圍內(nèi)。
磁控濺射是物相沉積的一種。一般的濺射法可被用于制備金屬、半導體、絕緣體等多材料,且具有設備簡單、易于控制、鍍膜面積大和附著力強等優(yōu)點。上世紀70年代發(fā)展起來的磁控濺射法更是實現(xiàn)了高速、低溫、低損傷。因為是在低氣壓下進行高速濺射,必須有效地提高氣體的離化率。磁控濺射通過在靶陰極表面引入磁場,利用磁場對帶電粒子的約束來提高等離子體密度以增加濺射率。磁控濺射是入射粒子和靶的碰撞過程。入射粒子在靶中經(jīng)歷復雜的散射過程,和靶原子碰撞,把部分動量傳給靶原子,此靶原子又和其他靶原子碰撞,形成級聯(lián)過程。在這種級聯(lián)過程中某些表面附近的靶原子獲得向外運動的足夠動量,離開靶被濺射出來。中頻交流磁控濺射在單個陰極靶系統(tǒng)中,與脈沖磁控濺射有同樣的釋放電荷、防止打弧作用。
磁控濺射的優(yōu)點:1、沉積速度快、基材溫升低、對膜層的損傷小;2、對于大部分材料,只要能制成靶材,就可以實現(xiàn)濺射;3、濺射所獲得的薄膜與基片結合較好;4、濺射所獲得的薄膜純度高、致密度好、成膜均勻性好;5、濺射工藝可重復性好,可以在大面積基片上獲得厚度均勻的薄膜;6、能夠控制鍍層的厚度,同時可通過改變參數(shù)條件控制組成薄膜的顆粒大?。?、不同的金屬、合金、氧化物能夠進行混合,同時濺射于基材上;8、易于實現(xiàn)工業(yè)化。靶源分平衡式和非平衡式,平衡式靶源鍍膜均勻,非平衡式靶源鍍膜膜層和基體結合力強。浙江雙靶磁控濺射步驟
磁控陰極按照磁場位形分布不同,大致可分為平衡態(tài)磁控陰極和非平衡態(tài)磁控陰極。北京專業(yè)磁控濺射技術
磁控濺射的種類:磁控濺射包括很多種類。各有不同工作原理和應用對象。但有一共同點:利用磁場與電場交互作用,使電子在靶表面附近成螺旋狀運行,從而增大電子撞擊氬氣產(chǎn)生離子的概率。所產(chǎn)生的離子在電場作用下撞向靶面從而濺射出靶材。靶源分平衡式和非平衡式,平衡式靶源鍍膜均勻,非平衡式靶源鍍膜膜層和基體結合力強。平衡靶源多用于半導體光學膜,非平衡多用于磨損裝飾膜。磁控陰極按照磁場位形分布不同,大致可分為平衡態(tài)磁控陰極和非平衡態(tài)磁控陰極。平衡態(tài)磁控陰極內(nèi)外磁鋼的磁通量大致相等,兩極磁力線閉合于靶面,很好地將電子/等離子體約束在靶面附近,增加了碰撞幾率,提高了離化效率,因而在較低的工作氣壓和電壓下就能起輝并維持輝光放電,靶材利用率相對較高。但由于電子沿磁力線運動主要閉合于靶面,基片區(qū)域所受離子轟擊較小。非平衡磁控濺射技術,即讓磁控陰極外磁極磁通大于內(nèi)磁極,兩極磁力線在靶面不完全閉合,部分磁力線可沿靶的邊緣延伸到基片區(qū)域,從而部分電子可以沿著磁力線擴展到基片,增加基片區(qū)域的等離子體密度和氣體電離率。北京專業(yè)磁控濺射技術