超聲波的機械作用可軟化組織,增強滲透,提高代謝,促進血液循環(huán),刺激神經(jīng)系統(tǒng)和細胞功能,因此具有超聲波獨特的***意義。
特點
1)超聲波在傳播時,方向性強,能量易于集中。
2)超聲波能在各種不同媒質中傳播,且可傳播足夠遠的距離。
3)超聲波與傳聲媒質的相互作用適中,易于攜帶有關傳聲媒質狀態(tài)的信息診斷或對傳聲媒質產(chǎn)生效用及***。
4)超聲波可在氣體、液體、固體、固熔體等介質中有效傳播。
5)超聲波可傳遞很強的能量。
6)超聲波會產(chǎn)生反射、干涉、疊加和共振現(xiàn)象。
超聲波在環(huán)保領域可以用于污水凈化、固體廢物處理等過程。通用超聲波處理主機
我們知道正確的波的物理定義是:振動在物體中的傳遞形成波。這樣波的形成必須有兩個條件:一是振動源,二是傳播介質。波的分類一般有如下幾種:一是根據(jù)振動方向和傳播方向來分類。當振動方向與傳播方向垂直時,稱為橫波。當振動方向與傳播方向一致時,稱為縱波。二是根據(jù)頻率分類,我們知道人耳敏感的聽覺范圍是20HZ-20000HZ,所以在這個范圍之內的波叫做聲波。低于這個范圍的波叫做次聲波,超過這個范圍的波叫超聲波。波在物體里傳播,主要有以下的參數(shù):一是速度V,二是頻率F,三是波長λ。三者之間的關系如下:V=F.λ。波在同一種物質中傳播的速度是一定的,所以頻率不同,波長也就不同。另外,還需要考慮的一點就是波在物體里傳播始終都存在著衰減,傳播的距離越遠,能量衰減也就越厲害,這在超聲波加工中也屬于考慮范圍。安徽精密超聲波處理主機超聲波在電子行業(yè)中可用于半導體器件的清洗、切割等過程。
超聲波清洗設備中的超聲波局部分為兩大部件;一個是超聲波換能器{或稱超聲波振頭)另一個是超聲波發(fā)生器,超聲波換能器是將超聲波發(fā)生器提供的電信號轉換為機械振動.這篇文章只討論超聲波發(fā)生器,不對超聲波換能器作討論.超聲波發(fā)生器(以下簡稱發(fā)生器)實質是一個功率信號發(fā)生器,發(fā)生一定頻率的正弦(或類似正弦)信號,超聲波發(fā)生器的發(fā)展與電力電子器件發(fā)展密切相關,一般可分為電子管、模擬式晶體管.開關式晶體管這幾個階段,下面分別敘述。
超聲波萃取的特點適用于中藥材有效成份的萃取,是中藥制藥徹底改變傳統(tǒng)的水煮醇沉萃取方法的新方法、新工藝。與水煮、醇沉工藝相比,
超聲波萃取具有如下突出特點:
(1)無需高溫。在40℃-50℃水溫F超聲波強化萃取,無水煮高溫,不破壞中藥材中某些具有熱不穩(wěn)定,易水解或氧化特性的藥效成份。超聲波能促使植物細胞地破壁,提高中藥的療效。(2)常壓萃取,安全性好,操作簡單易行,維護保養(yǎng)方便。
(2)萃取效率高。超聲波強化萃取20~40分鐘即可獲比較好提取率,萃取時間j為水煮、醇沉法的三分之一或更少。萃取充分,萃取量是傳統(tǒng)方法的二倍以上。據(jù)統(tǒng)計,超聲波在65~70oC工作效率非常高。而溫度在65oC度內中草藥植物的有效成份基本沒有受到破壞。加入超聲波后(在65度條件下),植物有效成份提取時間約40分鐘。而蒸煮法的蒸煮時間往往需要兩到三小時,是超聲波提取時間的3倍以上時間。每罐提取3次,基本上可提取有效成份的90%以上。
超聲波處理可以實現(xiàn)非接觸式清洗,避免了傳統(tǒng)清洗方法對工件表面的損傷。
超聲波對化妝品的分散
為了更進一步提取藥物精華和粒子微細化,并節(jié)約生產(chǎn)成本,達到分散、乳化效果,使化妝品更深入滲透到肌膚里層,讓肌膚很好的吸收,發(fā)揮藥物的效力和作用,采用超聲波乳化可達到非常理想的效果。采用超聲分散,則不需要使用乳化劑,就能使蠟及石蠟乳化、化妝水等油的微粒子分散。石臘在水中分散的粒子直徑可達1um以下。
超聲波對酒的醇化—催陳技術
一瓶美酒以它的酒味醇厚,綿軟柔和、芳香濃郁為人青睞,人們常用陳年老酒來形容酒的珍貴,一瓶上世紀的陳酒,標價幾萬元,其價格的含義在于時間的存放上。酒的主要控制因素是化學變化即酸的形成,并進一步酯化,酯參與乙醇和水的締合。剛出廠的酒含有戍醇,有辛辣味,這種氣味要經(jīng)過很長時間才能化解,這個緩慢變化稱酒的醇化。用功率1.6KW,頻率17.5-22KHZ的超聲波處理5-10min,可使酒的老熟時間縮短1/3到1/2。 超聲波處理可以用于材料的焊接和粘接,提高了連接的質量和強度。天津靠譜的超聲波處理廠家直銷
超聲波處理可以實現(xiàn)自動化控制,提高了生產(chǎn)過程的可控性和精度。通用超聲波處理主機
當然,仍然有一些參數(shù)還不是很清楚。研究人員提出決定化合物進入氣泡的性質不是其蒸汽壓而是其疏水性。因此,親水的化合物如苯酚和氯酚可能會在溶液中或者界面處受到羥基的攻擊。其它的一些疏水性化合物如四氯化碳、苯和氯苯可能主要是在氣泡中熱解。但是,其它的情況也有可能影響降解的位置,也有些情況是一些機理的互相競爭。總之,疏水性化合物和揮發(fā)性化合物易于被超聲波降解,而不揮發(fā)和親水性化合物超聲波是難以降解的。另一種反應的機理是等離子化學。這與超聲波發(fā)光與光致發(fā)光之間的關系和光化學與聲化學之間的關系相似。這種等離子的效應是由于對超聲波能量的吸收,從而在氣泡中形成為等離子體。以上提到的假設可以歸結為超臨界水的聲化學反應。事實上許多的研究人員都發(fā)現(xiàn),在氣泡和溶液的界面層存在著超過臨界條件的高溫高壓(647K、22.1MPa),這使得媒介有流體的物理性質。這些條件可通過改變溶質的溶解度和分散度來改善反應。但是,超臨界水的界面自由基只有幾毫秒的壽命和幾毫米的范圍。通用超聲波處理主機