模塊化設(shè)計讓機器人能適配不同作物的采摘需求。智能采摘機器人采用模塊化設(shè)計理念,其各個功能部件如機械臂、末端執(zhí)行器、傳感器組等都設(shè)計為的模塊。不同作物的生長特性、果實形態(tài)和采摘要求差異很大,例如,草莓果實小巧、生長在地面附近,需要精細的抓取和較低的采摘高度;而柑橘果實成簇生長,且果樹較高,需要機械臂具備更大的伸展范圍和不同的抓取方式。通過模塊化設(shè)計,當(dāng)需要采摘不同作物時,操作人員可以方便快捷地更換相應(yīng)的模塊。更換更小巧、靈活的機械臂和末端執(zhí)行器用于草莓采摘,或者換上伸展范圍更大、抓取力更強的模塊來應(yīng)對柑橘采摘。同時,軟件系統(tǒng)也能根據(jù)不同模塊的特性自動調(diào)整參數(shù)和控制策略,使機器人迅速適應(yīng)新的采摘任務(wù)。這種模塊化設(shè)計提高了機器人的通用性和靈活性,降低了果園使用多種采摘設(shè)備的成本。熙岳智能為應(yīng)對不同農(nóng)田環(huán)境,為采摘機器人設(shè)計了多種行走底盤可供選擇。山東果實智能采摘機器人價格低
機械手指采用仿生材料,抓取果實穩(wěn)定且不傷表皮。智能采摘機器人的機械手指采用了模仿生物組織特性的仿生材料,這種材料具有獨特的物理和力學(xué)性能。它既具備一定的柔韌性和彈性,能夠緊密貼合果實的表面,提供穩(wěn)定的抓取力;又具有良好的耐磨性和低摩擦系數(shù),避免在抓取過程中對果實表皮造成劃傷或磨損。仿生材料內(nèi)部還嵌入了微型壓力傳感器,這些傳感器能夠?qū)崟r感知機械手指與果實之間的接觸壓力,并將數(shù)據(jù)反饋給控制系統(tǒng)??刂葡到y(tǒng)根據(jù)果實的種類、大小和成熟度,精確調(diào)節(jié)機械手指的抓取力度。對于表皮嬌嫩的櫻桃,機械手指會以極輕微的力度包裹抓取;而對于相對堅硬的椰子,抓取力度則會適當(dāng)增強。通過仿生材料和智能控制系統(tǒng)的結(jié)合,機械手指在保證抓取穩(wěn)定的同時,限度地保護了果實的完整性,有效提升了采摘果實的品質(zhì)。河南節(jié)能智能采摘機器人定制農(nóng)業(yè)培訓(xùn)類機構(gòu)引入熙岳智能采摘機器人,為教學(xué)提供了先進的實踐設(shè)備。
利用圖像識別技術(shù)區(qū)分病果與健康果實。智能采摘機器人搭載的圖像識別技術(shù),依托深度學(xué)習(xí)算法與高分辨率攝像頭構(gòu)建起強大的果實健康檢測系統(tǒng)。其內(nèi)置的卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型,經(jīng)過海量的病果與健康果實圖像數(shù)據(jù)訓(xùn)練,能夠識別果實表面的病斑、腐爛、蟲害痕跡等特征。以蘋果為例,系統(tǒng)不能識別常見的輪紋病、炭疽病在果實表面形成的不規(guī)則斑塊,還能通過分析果實顏色分布、紋理變化,檢測出肉眼難以察覺的早期病變。在實際作業(yè)中,攝像頭以每秒 20 幀的速度采集果實圖像,圖像識別算法在毫秒級時間內(nèi)完成分析,若判斷為病果,機械臂將跳過該果實或?qū)⑵鋯为毞謷苊獠」烊虢】倒麑嵵?,保障采摘果實的整體品質(zhì)。經(jīng)測試,該技術(shù)對病果的識別準確率高達 97%,有效降低了因病果混入導(dǎo)致的產(chǎn)品質(zhì)量風(fēng)險與經(jīng)濟損失。
智能采摘機器人能適應(yīng)不同種植密度的果園環(huán)境。智能采摘機器人通過激光雷達、視覺攝像頭和環(huán)境感知算法,構(gòu)建起對果園環(huán)境的智能適應(yīng)能力。在高密度種植的果園中,機器人利用激光雷達掃描果樹間距和枝葉分布,規(guī)劃出狹窄空間內(nèi)的穿行路徑,機械臂采用折疊式設(shè)計,在通過密集區(qū)域時可收縮減小體積,避免碰撞。在低密度種植的果園,機器人則可快速移動,采用大范圍掃描模式尋找果實。同時,其 AI 視覺算法能夠根據(jù)不同種植密度調(diào)整果實識別策略,在枝葉茂密的高密度區(qū)域,算法加強對部分遮擋果實的識別能力;在開闊的低密度區(qū)域,提高果實識別速度。在福建的蜜柚園,既有傳統(tǒng)稀疏種植區(qū),又有新型密植區(qū),智能采摘機器人通過自動切換作業(yè)模式,在不同區(qū)域均能保持高效作業(yè),作業(yè)效率波動控制在 5% 以內(nèi),展現(xiàn)出強大的環(huán)境適應(yīng)能力。熙岳智能科技研發(fā)的機器人,通過視覺系統(tǒng)能快速鎖定可采摘的目標果實。
激光雷達系統(tǒng)實時掃描果園地形,自動規(guī)劃采摘路徑。激光雷達系統(tǒng)通過發(fā)射激光束并接收反射信號,能夠快速構(gòu)建果園的三維地形模型。它以極高的頻率向周圍環(huán)境發(fā)射激光,每秒可進行數(shù)萬次測量,從而獲取果園內(nèi)樹木、溝渠、障礙物等物體的精確位置和形狀信息?;谶@些實時掃描得到的數(shù)據(jù),機器人的路徑規(guī)劃算法會綜合考慮果園的地形起伏、果樹分布、采摘任務(wù)優(yōu)先級等因素,自動生成一條高效、安全的采摘路徑。例如,當(dāng)遇到地勢低洼的區(qū)域或密集的果樹叢時,算法會避開這些復(fù)雜地形,選擇更為平坦、開闊的路線;在多臺機器人協(xié)同作業(yè)時,還能合理分配路徑,避免相互干擾和重復(fù)作業(yè)。通過這種方式,激光雷達系統(tǒng)和路徑規(guī)劃算法的結(jié)合,確保了智能采摘機器人能夠在各種復(fù)雜的果園地形中高效、有序地開展采摘工作,提升作業(yè)效率。熙岳智能的智能采摘機器人可實現(xiàn)軟件仿真功能,方便技術(shù)人員進行調(diào)試優(yōu)化。獼猴挑智能采摘機器人定制
基于植物表型分析技術(shù),熙岳智能的這款機器人能更好地適應(yīng)不同果實的采摘需求。山東果實智能采摘機器人價格低
智能采摘機器人的出現(xiàn)緩解了農(nóng)業(yè)勞動力短缺問題。隨著城鎮(zhèn)化進程加快,農(nóng)村青壯年勞動力大量涌入城市,農(nóng)業(yè)勞動力短缺問題日益嚴峻,尤其在果實采摘高峰期,用工難、用工貴成為困擾果園經(jīng)營者的難題。智能采摘機器人的誕生為這一困境提供了有效解決方案。一臺智能采摘機器人每小時的作業(yè)量相當(dāng)于 5 - 8 名人工,且可 24 小時不間斷工作。在新疆的棉花采摘季,以往需要數(shù)千名拾花工耗時數(shù)月完成的采摘任務(wù),如今通過智能采摘機器人組成的作業(yè)團隊,可在數(shù)周內(nèi)高效完成。此外,機器人操作簡單,經(jīng)過短期培訓(xùn)的普通工人即可進行管理和維護,無需依賴專業(yè)的采摘技能。智能采摘機器人不填補了勞動力缺口,還降低了果園對季節(jié)性勞動力的依賴,保障了農(nóng)業(yè)生產(chǎn)的穩(wěn)定性和可持續(xù)性,推動農(nóng)業(yè)向現(xiàn)代化、智能化方向發(fā)展。山東果實智能采摘機器人價格低