海南TPPNanoscribe子公司

來源: 發(fā)布時間:2024-07-20

   對于光纖上打印的SERS探針,研究人員必須克服幾個制造上的挑戰(zhàn)。首先,他們設計了一個定制的光纖支架,可以在光纖的切面上打印。然后,打印的物體必須與光纖的重點部分完全對齊,以激發(fā)制造的拉曼熱點。剩下的一個挑戰(zhàn),特別是對于像單體陣列這樣的絲狀結(jié)構(gòu),是對可能傾斜的基材表面的補償。光纖傾斜的基材表面導致SERS活性微結(jié)構(gòu)的產(chǎn)量很低。為了推動光學領(lǐng)域的創(chuàng)新以及在醫(yī)療設備的應用和光學傳感的發(fā)展,例如光纖SERS探頭,Nanoscribe近期推出了新的3D打印系統(tǒng)QuantumXalign。憑借其專有的在光纖上的打印設置和在所有空間方向上的傾斜校正,新的3D打印系統(tǒng)可能已經(jīng)為在光纖上打印SERS探針的挑戰(zhàn)提供了答案,并為進一步改進和新的創(chuàng)新奠定了基礎(chǔ)。


憑借著獨有的3D微納加工技術(shù),Nanoscribe參與了各種研究項目,以開發(fā)基于集成光子學新技術(shù)。海南TPPNanoscribe子公司

海南TPPNanoscribe子公司,Nanoscribe

作為微納加工和3D打印領(lǐng)域的帶領(lǐng)者,Nanoscribe一直致力于推動各個科研領(lǐng)域,諸如力學超材料,微納機器人,再生醫(yī)學工程,微光學等創(chuàng)新領(lǐng)域的研究和發(fā)展,并提供優(yōu)化制程方案。2017年在上海成立的中國子公司納糯三維科技(上海)有限公司更是加強了全球銷售活動,并完善了亞太地區(qū)客戶服務范圍。此次推出的中文版官網(wǎng)在視覺效果上更清晰,結(jié)構(gòu)分類上更明確。首頁導航欄包括了產(chǎn)品信息,產(chǎn)品應用數(shù)據(jù)庫,公司資訊和技術(shù)支持幾大專欄。比較大化滿足用戶對信息的了解和需求。 德國NanoscribeQuantum X更多有關(guān)3D雙光子無掩模光刻技術(shù)的咨詢,歡迎致電Nanoscribe中國分公司-納糯三維。

海南TPPNanoscribe子公司,Nanoscribe

Nanoscribe的Photonic Professional GT2雙光子無掩模光刻系統(tǒng)的設計多功能性配合打印材料的多方面選擇性,可以實現(xiàn)微機械元件的制作,例如用光敏聚合物,納米顆粒復合物,或水凝膠打印的遠程操控可移動微型機器人,并可以選擇添加金屬涂層。此外,微納米器件也可以直接打印在不同的基材上,甚至可以直接打印于微機電系統(tǒng)(MEMS)。雙光子灰度光刻技術(shù)可以一步實現(xiàn)真正具有出色形狀精度的多級衍射光學元件(DOE),并且滿足DOE納米結(jié)構(gòu)表面的橫向和縱向分辨率達到亞微米量級。由于需要多次光刻,刻蝕和對準工藝,衍射光學元件(DOE)的傳統(tǒng)制造耗時長且成本高。 

    傳統(tǒng)3D打印難以實現(xiàn)對于復雜設計或曲線形狀的高分辨率3D打印,必須切片并分為大量水平和垂直層。這會明顯增加對于平滑、曲線或精細結(jié)構(gòu)的打印時間。雙光子聚合技術(shù)(2PP)則可以解決這個難題。Nanosribe于2019年推出的雙光子灰度光刻技術(shù)(2GL®)可實現(xiàn)體素調(diào)節(jié),從而明顯減少打印層數(shù)。這是通過掃描過程中的快速激光調(diào)制來實現(xiàn)的。并且,這項技術(shù)已從原先適用于。Nanoscribe于2023年推出雙光子灰度光刻3D打印技術(shù)3Dprintingby2GL®,該技術(shù)具備實現(xiàn)出色形狀精度的優(yōu)越打印品質(zhì),并將Nanoscribe的灰度技術(shù)拓展到三維層面。整個打印過程在保持高速掃描的同時實現(xiàn)實時動態(tài)調(diào)整激光功率。這使得聚合體素得到精確尺寸調(diào)整,以完美匹配任何3D形狀的輪廓。在無需切片步驟,不產(chǎn)生形狀失真的要求下,您將獲得具有無瑕疵光學級表面的任意3D打印設計的真實完美形狀。 Nanoscribe一直致力于推動各個科研領(lǐng)域,諸如力學超材料,微納機器人等。

海南TPPNanoscribe子公司,Nanoscribe

光學元件如何對準并打印到光子芯片上?打印對象的 3D 對準技術(shù)是基于具有高分辨率 3D 拓撲繪制的共聚焦單元。 為了精確對準光子芯片上的光學元件,智能軟件算法會自動識別預定義的標記和拓撲特征,以確定芯片上波導的確切位置和方向。 然后將虛擬坐標系設置到波導的出口,使其光軸和方向完美對準。 根據(jù)該坐標系打印的光學元件可確保好的光學質(zhì)量并比較大限度地減少耦合損耗。 該項技術(shù)可以利用自由空間微光耦合 (FSMOC) 實現(xiàn)高效的光耦合 。 詳情咨詢納糯三維科技(上海)有限公司Nanoscribe的3D打印設備具有高度靈活性和可定制性,能夠滿足不同行業(yè)的需求。江蘇TPPNanoscribe三維微納米加工系統(tǒng)

使用Nanoscribe的Photonic Professional系列打印系統(tǒng)制作的微流控元件可以完全嵌入進預制的二維微流道系統(tǒng)。海南TPPNanoscribe子公司

Nanoscribe公司成立于2007年,總部位于德國卡爾斯魯厄,秉持著卡爾斯魯厄理工學院(KIT)的技術(shù)背景的德國卡爾蔡司公司的支持,經(jīng)過十幾年的不斷研究和成長,已然成為微納米生產(chǎn)的帶領(lǐng)者,一直致力于推動諸如力學超材料,微納機器人,再生醫(yī)學工程,微光學等創(chuàng)新領(lǐng)域的研究和發(fā)展,并提供優(yōu)化制程方案。如今,Nanoscribe客戶遍布全球30個國家,超過1500名用戶正在使用Nanoscribe3D打印系統(tǒng)。這些大學包含哈佛大學、加州理工學院、牛津大學、倫敦帝國理工學院和蘇黎世聯(lián)邦理工學院等等。為了拓展并加強中國及亞太地區(qū)的銷售推廣和售后服務范圍,Nanoscribe于2017年底在上海成立了獨資子公司-納糯三維科技(上海)有限公司  海南TPPNanoscribe子公司