目標跟蹤是在首幀中給定待跟蹤目標的情況下,對目標進行特征提取,對感興趣區(qū)域進行分析;然后在后續(xù)圖像中找到相似的特征和感興趣區(qū)域,并對目標在下一幀中的位置進行預(yù)測。作為計算機視覺領(lǐng)域的一個熱點研究方向,目標跟蹤一直都是一項具有挑戰(zhàn)性的工作。目標跟蹤技術(shù)在導(dǎo)彈制導(dǎo)、智能監(jiān)控系統(tǒng)、視頻檢索、無人駕駛、人機交互和工業(yè)機器人等領(lǐng)域具有重要的作用。從上世紀50年代目標跟蹤的起源到現(xiàn)今,盡管已有大量的研究成果,但是在復(fù)雜條件下實現(xiàn)實時準確的跟蹤依舊難以實現(xiàn)。RV1126圖像處理板是我司自主研發(fā)的目標跟蹤板,該板卡采用國產(chǎn)高性能CPU,搭載自研目標跟蹤及跟蹤算法。無源目標跟蹤檢測
無人機的迅猛發(fā)展,使得無人機的反制技術(shù)也水漲船高,常見的有電子干擾、無人機識別對抗等方式。后者采用圖像識別技術(shù),通過在無人機攝像頭的基礎(chǔ)上加裝AI高性能圖像處理板,在算法的作用下,就具備無人機識別的功能,為無人機對抗創(chuàng)造條件。由于無人機飛行速度極快,因此針對于這樣環(huán)境下的AI識別需要“與眾不同”的圖像處理板。我們都知道,當(dāng)視頻幀率越高時,視頻越能夠體現(xiàn)畫面細節(jié)信息,而圖像識別算法正是逐幀進行識別,因此,攝像頭捕捉到的畫面細節(jié)越多,識別的精度就會越高。無源目標跟蹤檢測慧視AI板卡可以用于大型公共停車場。
云臺的旋轉(zhuǎn)將直接改變攝像機的視野,因此對于云臺的控制必須謹慎且準確。錯誤的控制會使目標從視野中消失,導(dǎo)致跟蹤的失敗。此外,如果云臺的控制幅度過小,可能會達不到目標回到視野中心的目的,目標也同樣極易丟失。相反如果在對目標運動速度有可靠估計的前提下,提前將目標移到視野中目標運動方向的另一側(cè),將為此后跟蹤目標贏得更多的時間,能夠提高跟蹤的成功率。所以為了使對于云臺的控制更為合理,應(yīng)該對于不同的情況采取不同的控制策略。對于情況的劃分主要取決于目標的可靠性和速度的穩(wěn)定性。
目標運動估計是根據(jù)目標在過去的位置對目標的運動規(guī)律加以總結(jié),并以此對目標將來的運動狀態(tài)進行預(yù)測。正確的預(yù)測,可以縮小匹配的計算區(qū)域,大幅的降低匹配計算量。在視頻跟蹤系統(tǒng)中由于被跟蹤的目標處于運動狀態(tài),為了把目標始終保持在攝像機視野之內(nèi),必須對攝像機加以控制。在實際應(yīng)用中,攝像機被固定在云臺上,云臺本身不做平移運動,但可以控制云臺進行水平擺動和上下俯仰,從而帶動攝像機做相應(yīng)運動。所以,對攝像機的控制就是對云臺的控制。AI算法賦能下的圖像處理板能夠進行智能目標識別。
用檢測器模型去解決跟蹤問題,遇到的比較大問題是訓(xùn)練數(shù)據(jù)不足。普通的檢測任務(wù)中,因為檢測物體的類別是已知的,可以收集大量數(shù)據(jù)來訓(xùn)練。例如 VOC、COCO 等檢測數(shù)據(jù)集,都有著上萬張圖片用于訓(xùn)練。而如果我們將跟蹤視為一個特殊的檢測任務(wù),檢測物體的類別是由用戶在首先幀的時候所指定的。這意味著能夠用來訓(xùn)練的數(shù)據(jù)只是只是只有少數(shù)幾張圖片。這給檢測器帶來了很大的障礙。而慧視光電定制的目標跟蹤算法可以有效的解決這個問題,通過AI自動圖像標注平臺SpeedDP的大量模型部署訓(xùn)練,能夠有效解決數(shù)據(jù)訓(xùn)練不足的問題。工程師以RK3399PRO核心板為基礎(chǔ)進行定制開發(fā),讓攝像頭更加智能高效,能夠輸出高清流的圖像視頻。視頻目標跟蹤有什么
目標跟蹤圖像分析是人工智能的重要組成部分。無源目標跟蹤檢測
成都慧視開發(fā)Viztra-HE030圖像處理板就十分合適,工業(yè)級芯片RK3588的加持下,至高輸出6.0TOPS的算力,足以滿足工業(yè)檢測需求。而像背景稍微簡單的地面人、車,湖面船舶的檢測,如果不是特殊需求,選擇性能適中的Viztra-ME025圖像處理板就能夠滿足需求。板卡采用國內(nèi)智能AI芯片RK3399Pro,基于雙Cortex-A72+四Cortex-A53大小核CPU結(jié)構(gòu);CPU主頻1.8GHz;能夠輸出3.0TOPS的算力,在我司高精尖目標識別算法的賦能下,就能夠?qū)崿F(xiàn)人車船的檢測識別。無源目標跟蹤檢測