兩者分別了兩種典型的液相混合方式,前者采用靜態(tài)混合方式,即將流體反復分割合并以縮短擴散路徑,而后者采用流體動力學集中方法,即多個進料微通道呈扇形分布,集中匯入一個狹窄的微通道,通過液體的擴散作用迅速混合。而英國Hull大學則設計了一種T形液液相微反應器,該微反應器大的特點是用電滲析(electro–osmoticflow)法輸送流體,如圖所示:它由底板和蓋板兩部分組成,兩部分用退火法焊接在一起。底板上蝕刻的微通道呈T形狀,其中一條微通道裝有金屬催化劑。蓋板上有A、B和C共3個直徑為2mm的圓柱形容器與微孔道連通,用于貯存反應物和產(chǎn)物。創(chuàng)闊科技使用的真空擴散焊接的微通道換熱器,使用壽命長。浦東新區(qū)微通道換熱器服務至上
復雜的氣固相催化微反應器一般都耦合了混合、換熱、傳感和分離等某一功能或多項功能。具有特征的氣相微反應器是麻省理工學院RaviSrinivason等設計制作的T形薄壁微反應器。該反應器用于氨的氧化反應,氨氣和氧氣分別從T形反應器的兩側通道進入,分別經(jīng)過流量傳感器,在正下方通道進口處混合,正下方通道壁外側裝有溫度傳感器和加熱器,而T形反應器的薄壁本身就是一個換熱器,通過變化薄壁的制作材料改變熱導率和調(diào)整壁厚度,可以控制反應熱量的移出,從而適合放熱量不同的各種化學反應。此外,F(xiàn)ranz等還設計制作了一種用于脫氫/加氫反應的微膜反應器,因為耦合了膜分離功能,反應物和產(chǎn)物在反應的同時進行分離,使平衡轉(zhuǎn)化率不斷提高,同時產(chǎn)物的收率也有所增加。耦合反應、加熱和冷卻3種功能的微反應器T形薄壁微反應器微膜反應器及其制作流程液液相反應的一個關鍵影響因素是充分混合,因而液液相微反應器或者與微混合器耦合在一起,或者本身就是一個微混合器。專為液液相反應而設計的與微混合器等其他功能單元耦合在一起的微反應器案例為數(shù)不多。主要有BASF設計的維生素前體合成微反應器和麻省理工學院設計的用于完成Dushman化學反應的微反應器。微通道換熱器服務至上創(chuàng)闊能源科技一站式提供加工換熱器,液冷板,均溫板。水冷板等。
創(chuàng)闊科技的微通道尺寸小,流體在微通道中的流動為層流狀態(tài),為了在層流狀態(tài)下提高微混合器的混合效果,實現(xiàn)快速混合,學者們設計出了許多微混合器的結構。依據(jù)有無外力的加人將微混合器,分為主動型微混合器與被動型微混合器。主動型微混合器需要外界的能量加人以誘導混合的發(fā)生,如磁場、電動力、超聲波等。與主動型微混合器需要加人外界能量不同,被動型微混合器依靠自身的幾何結構來促進混合。被動型微混合器又可以分為T型、分流型、混沌型等。T型微混合器結構簡單,但無法提供很大的流體間接觸面積。分流型微混合器將待混合流體分成許多薄層,薄層間相互接觸,增大流體間接觸面積促進混合。本文所研究的內(nèi)交叉指型微混合器為分流型微混合器?;煦鐚α骺梢允沽黧w界面變形、拉伸、折疊,從而增加流體界面面積強化傳質(zhì)。本文所研究的分離再結合型微混合器就是一種三維結構的混沌型微混合器。
創(chuàng)闊能源科技流量對于換熱效率的影響在低介質(zhì)流量時,金屬換熱器的換熱效率隨介質(zhì)流量的變化存在一個最大值,亦即對于確定結構的換熱器而言,存在一個比較好的操作流量值。并且,在相同的流量偏差下,系統(tǒng)效率在亞負荷操作時,效率降低幅度要比在超負荷操作時大得,因此,在一定范圍內(nèi),金屬微通道換熱器可超負荷運行,不宜在亞負荷狀態(tài)下操作,這點與常規(guī)尺度換熱器系統(tǒng)有明顯的區(qū)別。在高介質(zhì)流量時,器壁軸向?qū)釋Q熱效率的影響逐漸減弱。隨介質(zhì)流量的增加,換熱效率逐漸減小。集成式微通道換熱器,高效緊湊型換熱器請聯(lián)系創(chuàng)闊科技。
微通道結構的優(yōu)化及加工,創(chuàng)闊能源科技以光刻電鍍(LIGA)技術:1986年由德國Ehrfeld等利用高能加速器產(chǎn)生的同步輻射X射線刻蝕、結合電鑄成形和塑料鑄模技術發(fā)展出的LIGA工藝。該技術特點是:可以加工出大深寬比的微結構,加工面寬。但LIGA需要同步輻射X射線光源、制造成本高;LIGA實際上是一種標準的二維工藝,難以加工形狀連續(xù)變化的三維復雜微結構;而且同步輻射X光刻掩膜的制備也極為困難。(3)屬于個別特殊、特微加工,如微細電火花EDM、電子束加工、離子束加工、掃描隧道顯微鏡技術等??杉庸げ牧厦嬲?、工藝復雜。(4)近年來出現(xiàn)的準分子激光微細加工技術。準分子激光處于遠紫外波段,波長短、光子能量大,可以擊斷高聚物材料的部分化學鍵而實現(xiàn)化學。創(chuàng)闊科技制作微反應器的優(yōu)良特性,我們需要精確設計微反應器。重慶創(chuàng)闊能源微通道換熱器
高效微通道反應器加工聯(lián)系創(chuàng)闊金屬科技。浦東新區(qū)微通道換熱器服務至上
差不多同時發(fā)展了在組合化學、催化劑篩選和手提分析設備等方面有著誘人應用前景的微全分析系統(tǒng)(μTAS)。而把微加工技術應用于化學反應的研究始于1996年前后,Lerous和Ehrfeld等各自撰文系統(tǒng)闡述了微反應器在化學工程領域的應用原理及其獨特優(yōu)勢。現(xiàn)在微反應技術吸引了眾多學者在各個領域展開深入的研究,形式多樣的新型微反應器層出不窮,成為化學工程學科發(fā)展的一個新突破點。3.反應器的分類及結構①按微反應器的操作模式可分為:連續(xù)微反應器、半連續(xù)微反應器和間歇微反應器。②按微反應器的用途可分為:生產(chǎn)用微反應器和實驗用微反應器兩大類,其中實驗用微反應器的用途主要有藥物篩選、催化劑性能測試及工藝開發(fā)和優(yōu)化等。③若從化學反應工程的角度看,微反應器的類型與反應過程密不可分,不同相態(tài)的反應過程對微反應器結構的要求不同,因此對應于不同相態(tài)的反應過程,微反應器又可分為氣固相催化微反應器、液液相微反應器、氣液相微反應器和氣液固三相催化微反應器等。由于微反應器的特點適合于氣固相催化反應,迄今為止微反應器的研究主要集中于氣固相催化反應,因而氣固相催化微反應器的種類很多。簡單的氣固相催化微反應器莫過于壁面固定有催化劑的微通道。浦東新區(qū)微通道換熱器服務至上