南平搜狗AIGC好處

來源: 發(fā)布時間:2024-01-03

    大腦模擬主條目:控制論和計算神經(jīng)科學20世紀40年代到50年代,許多研究者探索神經(jīng)病學,信息理論及控制論之間的聯(lián)系。其中還造出一些使用電子網(wǎng)絡(luò)構(gòu)造的初步智能,如。這些研究者還經(jīng)常在普林斯頓大學和英國的RATIOCLUB舉行技術(shù)協(xié)會會議.直到1960,大部分人已經(jīng)放棄這個方法,盡管在80年代再次提出這些原理。符號處理主條目:GOFAI當20世紀50年代,數(shù)字計算機研制成功,研究者開始探索人類智能是否能簡化成符號處理。研究主要集中在卡內(nèi)基梅隆大學,斯坦福大學和麻省理工學院,而各自有孑立的研究風格。JOHNHAUGELAND稱這些方法為GOFAI(出色的老式人工智能)。60年代,符號方法在小型證明程序上模擬高級思考有很大的成就?;诳刂普摶蛏窠?jīng)網(wǎng)絡(luò)的方法則置于次要。60~70年代的研究者確信符號方法可以成功創(chuàng)造強人工智能的機器,同時這也是他們的目標。 盡管還很簡陋,這些系統(tǒng)已能夠通過黑白區(qū)別分辨出物件形狀的不同.南平搜狗AIGC好處

南平搜狗AIGC好處,AIGC

    AIGC在電商行業(yè)應(yīng)用在商品展示環(huán)節(jié):AIGC生成3D模型用于商品展示和虛擬適用,提升線上購物體驗;在主播打造環(huán)節(jié):打造虛擬主播,賦能直播帶貨;在交易場景環(huán)節(jié):虛擬商城構(gòu)建,智能聊天機器人,賦能線上和線下秀場加速演變,為消費者提供全新的購物場景。4、AIGC在娛樂行業(yè)應(yīng)用全員娛樂:在圖像內(nèi)容生成應(yīng)用(人臉美妝、融合;黑白圖像上色、圖像風格轉(zhuǎn)換、人像屬性變換)社交互動:虛擬主播、虛擬網(wǎng)紅、聊天機器人、聊天互動游戲。5、AIGC在其他行業(yè)應(yīng)用在教育行業(yè):AIGC為教育工作者提供了豐富的教學工作與內(nèi)容素材。比如,在通過數(shù)字人生成技術(shù),可對歷史人物進行生成并與之對話,提升課堂互動。再比如,通過ChatGPT生成創(chuàng)意性教學方案,提供更加普遍的授課思路。在工業(yè)行業(yè):將AIGC技術(shù)融合工業(yè)設(shè)計軟件CAD,Solidworks中,通過文本輸入提示語生成,特定樣式的機構(gòu)模型供設(shè)計者參考。比如“設(shè)計一款衛(wèi)星太陽能電池板可伸縮折翼機構(gòu)”通過AIGC模型生成3D設(shè)計機構(gòu)。AIGC在內(nèi)容生成行業(yè)的突破,將提升內(nèi)容創(chuàng)作者,設(shè)計師,工程師,教育工作者等各行業(yè)人員工作效率與質(zhì)量。同時,將加速企業(yè)數(shù)字化與智能化進程。 南平搜狗AIGC弊端計算機技術(shù)不再只屬于實驗室中的一小群研究人員。

南平搜狗AIGC好處,AIGC

    AIGC的產(chǎn)品形態(tài)有哪些?1、基礎(chǔ)層(模型服務(wù))基礎(chǔ)層為采用預(yù)訓練大模型搭建的基礎(chǔ)設(shè)施。由于開發(fā)預(yù)訓練大模型技術(shù)門檻高、投入成本高,因此,該層主要由少數(shù)頭部企業(yè)或研發(fā)機構(gòu)主導。如谷歌、微軟、Meta、OpenAI、DeepMind、?;A(chǔ)層的產(chǎn)品形態(tài)主要包括兩種:一種為通過受控的api接口收取調(diào)用費;另一種為基于基礎(chǔ)設(shè)施開發(fā)專業(yè)的軟件平臺收取費用。2、中間層(2B)該層與基礎(chǔ)層的特別主要區(qū)別在于,中間層不具備開發(fā)大模型的能力,但是可基于開源大模型等開源技術(shù)進行改進、抽取或模型二次開發(fā)。該層為在大模型的基礎(chǔ)上開發(fā)的場景化、垂直化、定制化的應(yīng)用模型或工具。在AIGC的應(yīng)用場景中基于大模型抽取出個性化、定制化的應(yīng)用模型或工具滿足行業(yè)需求。如基于開源的StableDiffusion大模型所開發(fā)的二次元風格圖像生成器,滿足特定行業(yè)場景需求。中間層的產(chǎn)品形態(tài)、商業(yè)模式與基礎(chǔ)層保持一致,分別為接口調(diào)用費與平臺軟件費。3、應(yīng)用層(2C)應(yīng)用層主要基于基礎(chǔ)層與中間層開發(fā),面向C端的場景化工具或軟件產(chǎn)品。應(yīng)用層更加關(guān)注用戶的需求,將AIGC技術(shù)切實融入用戶需求,實現(xiàn)不同形態(tài)、不同功能的產(chǎn)品落地??梢酝ㄟ^網(wǎng)頁、小程序、群聊、app等不同的載體呈現(xiàn)。

    AIGC推動創(chuàng)意落地,突破表達瓶頸雖然AI能幫助人類更好的釋放創(chuàng)意,但從劇本到熒幕仍是一段漫長的距離。從創(chuàng)意到表達的跨越,AI可以保駕護航,幫助人類化不可能為可能。舉例來說,當前勞動密集型的影視生產(chǎn)方式難以滿足觀眾對質(zhì)量日益提高的要求。2009年上映的《阿凡達》令全球觀眾旗艦了解3D電影的魅力,此后沉浸式觀影體驗成了影視產(chǎn)業(yè)鏈上共同的追求。為了滿足這種追求,影視特技與應(yīng)用呈現(xiàn)井噴式發(fā)展,但后期制作與渲染,復雜程度也都水漲船高,傳統(tǒng)的作業(yè)方式已經(jīng)難以為繼,而AI技術(shù)就有推動變革的潛力。從技術(shù)角度來說,影視特技行業(yè)的作業(yè)流程是極為繁瑣的,比如場景中的建模就需要從一草一木、一人一物開始,逐漸打造世界的雛形,再通過骨骼綁定和動作設(shè)計讓模型活起來,之后的定分鏡、調(diào)燈光、鋪軌道、取鏡頭等等無不費時費力,后期的解算和渲染等工作同樣如此。可以說在影視工作的每個環(huán)節(jié)都有大量重復性工作或等待時間,無形中拖慢了工作節(jié)奏。因此現(xiàn)在就有企業(yè)致力于解封流程生產(chǎn)力,比如優(yōu)酷的“妙嘆”工具箱,在動漫中實時渲染,幫助工作者實時把握效果或做出修改,節(jié)省了大量成本,減輕人員負擔,目前已被多家國漫企業(yè)采用。 大腦不是計算機,不會亦步亦趨、按部就班的根據(jù)輸入產(chǎn)生輸出。

南平搜狗AIGC好處,AIGC

    實現(xiàn)方法人工智能在計算機上實現(xiàn)時有2種不同的方式。一種是采用傳統(tǒng)的編程技術(shù),使系統(tǒng)呈現(xiàn)智能的效果,而不考慮所用方法是否與人或動物機體所用的方法相同。這種方法叫工程學方法,它已在一些領(lǐng)域內(nèi)作出了成果,如文字識別、電腦下棋等。另一種是模擬,它不僅要看效果,還要求實現(xiàn)方法也和人類或生物機體所用的方法相同或相類似。遺傳算法(GENERICALGORITHM,簡稱GA)和人工神經(jīng)網(wǎng)絡(luò)(ARTIFICIALNEURALNETWORK,簡稱ANN)均屬后一類型。遺傳算法模擬人類或生物的遺傳-進化機制,人工神經(jīng)網(wǎng)絡(luò)則是模擬人類或動物大腦中神經(jīng)細胞的活動方式。為了得到相同智能效果,兩種方式通常都可使用。采用前一種方法,需要人工詳細規(guī)定程序邏輯,如果游戲簡單,還是方便的。如果游戲復雜,角色數(shù)量和活動空間增加,相應(yīng)的邏輯就會很復雜(按指數(shù)式增長),人工編程就非常繁瑣,容易出錯。而一旦出錯,就必須修改原程序,重新編譯、調(diào)試,結(jié)尾為用戶提供一個新的版本或提供一個新補丁,非常麻煩。 盡管經(jīng)歷了這些受挫的事件,AI仍在慢慢恢復發(fā)展.新的技術(shù)在日本被開發(fā)出來,如在美國原創(chuàng)的模糊邏輯。三明企業(yè)AIGC用處

霍金斯認為,從人工智能到神經(jīng)網(wǎng)絡(luò),早先復制人類智能的努力無一成功,究其原因。南平搜狗AIGC好處

    計算智能80年代中DAVIDRUMELHART等再次提出神經(jīng)網(wǎng)絡(luò)和聯(lián)結(jié)主義.這和其他的子符號方法,如模糊控制和進化計算,都屬于計算智能學科研究范疇。統(tǒng)計學法90年代,人工智能研究發(fā)展出復雜的數(shù)學工具來解決特定的分支問題。這些工具是真正的科學方法,即這些方法的結(jié)果是可測量的和可驗證的,同時也是人工智能成功的原因。共用的數(shù)學語言也允許已有學科的合作(如數(shù)學,經(jīng)濟或運籌學)。“革新”和“NEATS的成功”。有人批評這些技術(shù)太專注于特定的問題,而沒有考慮長遠的強人工智能目標。集成方法智能AGENT范式智能AGENT是一個會感知環(huán)境并作出行動以達致目標的系統(tǒng)。 南平搜狗AIGC好處