貴州第三方軟件測(cè)試公司

來(lái)源: 發(fā)布時(shí)間:2025-04-17

    嘗試了前端融合、后端融合和中間融合三種融合方法對(duì)進(jìn)行有效融合,有效提高了惡意軟件的準(zhǔn)確率,具備較好的泛化性能和魯棒性。實(shí)驗(yàn)結(jié)果顯示,相對(duì)**且互補(bǔ)的特征視圖和不同深度學(xué)習(xí)融合機(jī)制的使用明顯提高了檢測(cè)方法的檢測(cè)能力和泛化性能,其中較優(yōu)的中間融合方法取得了%的準(zhǔn)確率,對(duì)數(shù)損失為,auc值為。有效解決了現(xiàn)有采用二進(jìn)制可執(zhí)行文件的單一特征類型進(jìn)行惡意軟件檢測(cè)的檢測(cè)方法檢測(cè)結(jié)果準(zhǔn)確率不高、可靠性低、泛化性和魯棒性不佳的問(wèn)題。另外,惡意軟件很難同時(shí)偽造良性軟件的多個(gè)抽象層次的特征以逃避檢測(cè),本發(fā)明實(shí)施例同時(shí)融合軟件的二進(jìn)制可執(zhí)行文件的多個(gè)抽象層次的特征,可準(zhǔn)確檢測(cè)出偽造良性軟件特征的惡意軟件,解決了現(xiàn)有采用二進(jìn)制可執(zhí)行文件的單一特征類型進(jìn)行惡意軟件檢測(cè)的檢測(cè)方法難以檢測(cè)出偽造良性軟件特征的惡意軟件的問(wèn)題。附圖說(shuō)明為了更清楚地說(shuō)明本發(fā)明實(shí)施例或現(xiàn)有技術(shù)中的技術(shù)方案,下面將對(duì)實(shí)施例或現(xiàn)有技術(shù)描述中所需要使用的附圖作簡(jiǎn)單地介紹,顯而易見(jiàn)地,下面描述中的附圖**是本發(fā)明的一些實(shí)施例,對(duì)于本領(lǐng)域普通技術(shù)人員來(lái)講,在不付出創(chuàng)造性勞動(dòng)的前提下,還可以根據(jù)這些附圖獲得其他的附圖。圖1是前端融合方法的流程圖。代碼審計(jì)發(fā)現(xiàn)2處潛在內(nèi)存泄漏風(fēng)險(xiǎn),建議版本迭代修復(fù)。貴州第三方軟件測(cè)試公司

貴州第三方軟件測(cè)試公司,測(cè)評(píng)

    后端融合模型的10折交叉驗(yàn)證的準(zhǔn)確率是%,對(duì)數(shù)損失是,混淆矩陣如圖13所示,規(guī)范化后的混淆矩陣如圖14所示。后端融合模型的roc曲線如圖15所示,其顯示后端融合模型的auc值為。(6)中間融合中間融合的架構(gòu)如圖16所示,中間融合方式用深度神經(jīng)網(wǎng)絡(luò)從三種模態(tài)的特征分別抽取高等特征表示,然后合并學(xué)習(xí)得到的特征表示,再作為下一個(gè)深度神經(jīng)網(wǎng)絡(luò)的輸入訓(xùn)練模型,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過(guò)擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。圖16中,用于抽取dll和api信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含3個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是128,第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,第三個(gè)隱含層的神經(jīng)元個(gè)數(shù)是32,且3個(gè)隱含層中間間隔設(shè)置有dropout層。用于抽取格式信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,其第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是32,且2個(gè)隱含層中間設(shè)置有dropout層。用于抽取字節(jié)碼n-grams特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含4個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是512,第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是384,第三個(gè)隱含層的神經(jīng)元個(gè)數(shù)是256,第四個(gè)隱含層的神經(jīng)元個(gè)數(shù)是125。軟件驗(yàn)證測(cè)試報(bào)告用戶體驗(yàn)測(cè)評(píng)中界面交互評(píng)分低于同類產(chǎn)品均值15.6%。

貴州第三方軟件測(cè)試公司,測(cè)評(píng)

    將三種模態(tài)特征和三種融合方法的結(jié)果進(jìn)行了對(duì)比,如表3所示。從表3可以看出,前端融合和中間融合較基于模態(tài)特征的檢測(cè)準(zhǔn)確率更高,損失率更低。后端融合是三種融合方法中較弱的,雖然明顯優(yōu)于基于dll和api信息、pe格式結(jié)構(gòu)特征的實(shí)驗(yàn)結(jié)果,但稍弱于基于字節(jié)碼3-grams特征的結(jié)果。中間融合是三種融合方法中**好的,各項(xiàng)性能指標(biāo)都非常接近**優(yōu)值。表3實(shí)驗(yàn)結(jié)果對(duì)比本實(shí)施例提出了基于多模態(tài)深度學(xué)習(xí)的惡意軟件檢測(cè)方法,提取了三種模態(tài)的特征(dll和api信息、pe格式結(jié)構(gòu)信息和字節(jié)碼3-grams),提出了通過(guò)三種融合方式(前端融合、后端融合、中間融合)集成三種模態(tài)的特征,有效提高惡意軟件檢測(cè)的準(zhǔn)確率和魯棒性。實(shí)驗(yàn)結(jié)果顯示,相對(duì)**且互補(bǔ)的特征視圖和不同深度學(xué)習(xí)融合機(jī)制的使用明顯提高了檢測(cè)方法的檢測(cè)能力和泛化性能,其中較優(yōu)的中間融合方法取得了%的準(zhǔn)確率,對(duì)數(shù)損失為,auc值為,各項(xiàng)性能指標(biāo)已接近**優(yōu)值??紤]到樣本集可能存在噪聲,本實(shí)施例提出的方法已取得了比較理想的結(jié)果。由于惡意軟件很難同時(shí)偽造多個(gè)模態(tài)的特征,本實(shí)施例提出的方法比單模態(tài)特征方法更魯棒。以上所述*為本發(fā)明的較佳實(shí)施例而已,并非用于限定本發(fā)明的保護(hù)范圍。

    以備實(shí)際測(cè)試嚴(yán)重偏離計(jì)劃時(shí)使用。在TMM的定義級(jí),測(cè)試過(guò)程中引入計(jì)劃能力,在TMM的集成級(jí),測(cè)試過(guò)程引入控制和監(jiān)視活動(dòng)。兩者均為測(cè)試過(guò)程提供了可見(jiàn)性,為測(cè)試過(guò)程持續(xù)進(jìn)行提供保證。第四級(jí)管理和測(cè)量級(jí)在管理和測(cè)量級(jí),測(cè)試活動(dòng)除測(cè)試被測(cè)程序外,還包括軟件生命周期中各個(gè)階段的評(píng)審,審查和追查,使測(cè)試活動(dòng)涵蓋了軟件驗(yàn)證和軟件確認(rèn)活動(dòng)。根據(jù)管理和測(cè)量級(jí)的要求,軟件工作產(chǎn)品以及與測(cè)試相關(guān)的工作產(chǎn)品,如測(cè)試計(jì)劃,測(cè)試設(shè)計(jì)和測(cè)試步驟都要經(jīng)過(guò)評(píng)審。因?yàn)闇y(cè)試是一個(gè)可以量化并度量的過(guò)程。為了測(cè)量測(cè)試過(guò)程,測(cè)試人員應(yīng)建立測(cè)試數(shù)據(jù)庫(kù)。收集和記錄各軟件工程項(xiàng)目中使用的測(cè)試用例,記錄缺陷并按缺陷的嚴(yán)重程度劃分等級(jí)。此外,所建立的測(cè)試規(guī)程應(yīng)能夠支持軟件組終對(duì)測(cè)試過(guò)程的控制和測(cè)量。管理和測(cè)量級(jí)有3個(gè)要實(shí)現(xiàn)的成熟度目標(biāo):建立**范圍內(nèi)的評(píng)審程序,建立測(cè)試過(guò)程的測(cè)量程序和軟件質(zhì)量評(píng)價(jià)。(I)建立**范圍內(nèi)的評(píng)審程序軟件**應(yīng)在軟件生命周期的各階段實(shí)施評(píng)審,以便盡早有效地識(shí)別,分類和消除軟件中的缺陷。建立評(píng)審程序有4個(gè)子目標(biāo):1)管理層要制訂評(píng)審政策支持評(píng)審過(guò)程。2)測(cè)試組和軟件質(zhì)量保證組要確定并文檔化整個(gè)軟件生命周期中的評(píng)審目標(biāo),評(píng)審計(jì)劃。艾策科技發(fā)布產(chǎn)品:智能企業(yè)管理平臺(tái)。

貴州第三方軟件測(cè)試公司,測(cè)評(píng)

    保留了較多信息,同時(shí)由于操作數(shù)比較隨機(jī),某種程度上又沒(méi)有抓住主要矛盾,干擾了主要語(yǔ)義信息的提取。pe文件即可移植文件導(dǎo)入節(jié)中的動(dòng)態(tài)鏈接庫(kù)(dll)和應(yīng)用程序接口(api)信息能大致反映軟件的功能和性質(zhì),通過(guò)一個(gè)可執(zhí)行程序引用的dll和api信息可以粗略的預(yù)測(cè)該程序的功能和行為。belaoued和mazouzi應(yīng)用統(tǒng)計(jì)khi2檢驗(yàn)分析了pe格式的惡意軟件和良性軟件的導(dǎo)入節(jié)中的dll和api信息,分析顯示惡意軟件和良性軟件使用的dll和api信息統(tǒng)計(jì)上有明顯的區(qū)別。后續(xù)的研究人員提出了挖掘dll和api信息的惡意軟件檢測(cè)方法,該類方法提取的特征語(yǔ)義信息豐富,但*從二進(jìn)制可執(zhí)行文件的導(dǎo)入節(jié)提取特征,忽略了整個(gè)可執(zhí)行文件的大量信息。惡意軟件和被***二進(jìn)制可執(zhí)行文件格式信息上存在一些異常,這些異常是檢測(cè)惡意軟件的關(guān)鍵。研究人員提出了基于二進(jìn)制可執(zhí)行文件格式結(jié)構(gòu)信息的惡意軟件檢測(cè)方法,這類方法從二進(jìn)制可執(zhí)行文件的pe文件頭、節(jié)頭部、資源節(jié)等提取特征,基于這些特征使用機(jī)器學(xué)習(xí)分類算法處理,取得了較高的檢測(cè)準(zhǔn)確率。這類方法通常不受變形或多態(tài)等混淆技術(shù)影響,提取特征只需要對(duì)pe文件進(jìn)行格式解析,無(wú)需遍歷整個(gè)可執(zhí)行文件,提取特征速度較快。對(duì)比分析顯示資源占用率高于同類產(chǎn)品均值26%。昆明軟件測(cè)試機(jī)構(gòu)

安全掃描確認(rèn)軟件通過(guò)ISO 27001標(biāo)準(zhǔn),無(wú)高危漏洞記錄。貴州第三方軟件測(cè)試公司

    每一種信息的來(lái)源或者形式,都可以稱為一種模態(tài)。例如,人有觸覺(jué),聽(tīng)覺(jué),視覺(jué),嗅覺(jué)。多模態(tài)機(jī)器學(xué)習(xí)旨在通過(guò)機(jī)器學(xué)習(xí)的方法實(shí)現(xiàn)處理和理解多源模態(tài)信息的能力。多模態(tài)學(xué)習(xí)從1970年代起步,經(jīng)歷了幾個(gè)發(fā)展階段,在2010年后***步入深度學(xué)習(xí)(deeplearning)階段。在某種意義上,深度學(xué)習(xí)可以被看作是允許我們“混合和匹配”不同模型以創(chuàng)建復(fù)雜的深度多模態(tài)模型。目前,多模態(tài)數(shù)據(jù)融合主要有三種融合方式:前端融合(early-fusion)即數(shù)據(jù)水平融合(data-levelfusion)、后端融合(late-fusion)即決策水平融合(decision-levelfusion)以及中間融合(intermediate-fusion)。前端融合將多個(gè)**的數(shù)據(jù)集融合成一個(gè)單一的特征向量空間,然后將其用作機(jī)器學(xué)習(xí)算法的輸入,訓(xùn)練機(jī)器學(xué)習(xí)模型,如圖1所示。由于多模態(tài)數(shù)據(jù)的前端融合往往無(wú)法充分利用多個(gè)模態(tài)數(shù)據(jù)間的互補(bǔ)性,且前端融合的原始數(shù)據(jù)通常包含大量的冗余信息。因此,多模態(tài)前端融合方法常常與特征提取方法相結(jié)合以剔除冗余信息,基于領(lǐng)域經(jīng)驗(yàn)從每個(gè)模態(tài)中提取更高等別的特征表示,或者應(yīng)用深度學(xué)習(xí)算法直接學(xué)習(xí)特征表示,然后在特性級(jí)別上進(jìn)行融合。后端融合則是將不同模態(tài)數(shù)據(jù)分別訓(xùn)練好的分類器輸出決策進(jìn)行融合,如圖2所示。貴州第三方軟件測(cè)試公司

標(biāo)簽: 測(cè)評(píng)