公共柵極單元100與第1發(fā)射極單元101和第二發(fā)射極單元201之間通過刻蝕方式進(jìn)行隔開;第二表面上設(shè)有工作區(qū)域10和電流檢測區(qū)域20的公共集電極單元200;接地區(qū)域30則設(shè)置于第1發(fā)射極單元101內(nèi)的任意位置處;電流檢測區(qū)域20和接地區(qū)域30分別用于與檢測電阻40連接,以使檢測電阻40上產(chǎn)生電壓,并根據(jù)電壓檢測工作區(qū)域10的工作電流。具體地,工作區(qū)域10和電流檢測區(qū)域20具有公共柵極單元100和公共集電極單元200,此外,電流檢測區(qū)域20還具有第二發(fā)射極單元201和第三發(fā)射極單元202,檢測電阻40則分別與第二發(fā)射極單元201和接地區(qū)域30連接。此時(shí),在電流檢測過程中,工作區(qū)域10由公共柵極單元100提供驅(qū)動,以使公共集電極單元200上的電流ic通過第二發(fā)射極單元201達(dá)到檢測電阻40,從而可以在檢測電阻40上產(chǎn)生測試電壓vs,進(jìn)而可以根據(jù)該測試電壓vs檢測工作區(qū)域10的工作電流。因此,在上述電流檢測過程中,電流檢測區(qū)域20的第二發(fā)射極單元201相當(dāng)于沒有公共柵極單元100提供驅(qū)動,即對于igbt芯片的電子和空穴兩種載流子形成的電流,電流檢測區(qū)域20的第二發(fā)射極單元201只獲取空穴形成的電流作為檢測電流,從而避免了檢測電流受公共柵極單元100的電壓的影響。 IGBT的轉(zhuǎn)移特性是指輸出漏極電流Id與柵源電壓Ugs之間的關(guān)系曲線。浙江進(jìn)口SEMIKRON西門康IGBT模塊
不論漏極-源極電壓VDS之間加多大或什么極性的電壓,總有一個pn結(jié)處于反偏狀態(tài),漏、源極間沒有導(dǎo)電溝道,器件無法導(dǎo)通。但如果VGS正向足夠大,此時(shí)柵極G和襯底p之間的絕緣層中會產(chǎn)生一個電場,方向從柵極指向襯底,電子在該電場的作用下聚集在柵氧下表面,形成一個N型薄層(一般為幾個nm),連通左右兩個N+區(qū),形成導(dǎo)通溝道,如圖中黃域所示。當(dāng)VDS>0V時(shí),N-MOSFET管導(dǎo)通,器件工作。了解完以PNP為例的BJT結(jié)構(gòu)和以N-MOSFET為例的MOSFET結(jié)構(gòu)之后,我們再來看IGBT的結(jié)構(gòu)圖↓IGBT內(nèi)部結(jié)構(gòu)及符號黃塊表示IGBT導(dǎo)通時(shí)形成的溝道。首先看黃色虛線部分,細(xì)看之下是不是有一絲熟悉之感?這部分結(jié)構(gòu)和工作原理實(shí)質(zhì)上和上述的N-MOSFET是一樣的。當(dāng)VGE>0V,VCE>0V時(shí),IGBT表面同樣會形成溝道,電子從n區(qū)出發(fā)、流經(jīng)溝道區(qū)、注入n漂移區(qū),n漂移區(qū)就類似于N-MOSFET的漏極。藍(lán)色虛線部分同理于BJT結(jié)構(gòu),流入n漂移區(qū)的電子為PNP晶體管的n區(qū)持續(xù)提供電子,這就保證了PNP晶體管的基極電流。我們給它外加正向偏壓VCE,使PNP正向?qū)?,IGBT器件正常工作。這就是定義中為什么說IGBT是由BJT和MOSFET組成的器件的原因。此外,圖中我還標(biāo)了一個紅色部分。 浙江進(jìn)口SEMIKRON西門康IGBT模塊IGBT導(dǎo)通時(shí)的飽和壓降比MOSFET低而和GTR接近,飽和壓降隨柵極電壓的增加而降低。
圖1所示為一個N溝道增強(qiáng)型絕緣柵雙極晶體管結(jié)構(gòu),N+區(qū)稱為源區(qū),附于其上的電極稱為源極。N+區(qū)稱為漏區(qū)。器件的控制區(qū)為柵區(qū),附于其上的電極稱為柵極。溝道在緊靠柵區(qū)邊界形成。在漏、源之間的P型區(qū)(包括P+和P一區(qū))(溝道在該區(qū)域形成),稱為亞溝道區(qū)(Subchannelregion)。而在漏區(qū)另一側(cè)的P+區(qū)稱為漏注入?yún)^(qū)(Draininjector),它是IGBT特有的功能區(qū),與漏區(qū)和亞溝道區(qū)一起形成PNP雙極晶體管,起發(fā)射極的作用,向漏極注入空穴,進(jìn)行導(dǎo)電調(diào)制,以降低器件的通態(tài)電壓。附于漏注入?yún)^(qū)上的電極稱為漏極。IGBT的開關(guān)作用是通過加正向柵極電壓形成溝道,給PNP晶體管提供基極電流,使IGBT導(dǎo)通。反之,加反向門極電壓消除溝道,切斷基極電流,使IGBT關(guān)斷。IGBT的驅(qū)動方法和MOSFET基本相同,只需控制輸入極N一溝道MOSFET,所以具有高輸入阻抗特性。當(dāng)MOSFET的溝道形成后,從P+基極注入到N一層的空穴(少子),對N一層進(jìn)行電導(dǎo)調(diào)制,減小N一層的電阻,使IGBT在高電壓時(shí),也具有低的通態(tài)電壓。IGBT和可控硅區(qū)別IGBT與晶閘管1.整流元件(晶閘管)簡單地說:整流器是把單相或三相正弦交流電流通過整流元件變成平穩(wěn)的可調(diào)的單方向的直流電流。其實(shí)現(xiàn)條件主要是依靠整流管。
IGBT模塊旁的續(xù)流二極管續(xù)流二極管二極管通常是指反向并聯(lián)在IGBT模塊兩端的一個二極管,它的作用是在電路中電壓或電流出現(xiàn)突變時(shí),對電路中其它元件起保護(hù)作用。如在變頻驅(qū)動電動機(jī)運(yùn)行時(shí),與IGBT并聯(lián)的快恢復(fù)二極管使IGBT在關(guān)斷時(shí)電動機(jī)定子繞組中的儲存的能量能提供一個繼續(xù)流通的路徑,避免激起高壓損壞IGBT。二極管除繼續(xù)流通正向電流外,更重要的反向恢復(fù)特性,因?yàn)樗苯雨P(guān)系到逆變橋上下臂IGBT換流時(shí)的動態(tài)特性。對于感性負(fù)載而言,由于感生電壓的存在,在IGBT的S或D極結(jié)點(diǎn)上,總會有流入和流出的電流存在。那個二極管就負(fù)責(zé)流出電流通路的。從IGBT的結(jié)構(gòu)原理可知,它只能單向?qū)?。另一個方向就要借助和它并聯(lián)的二極管實(shí)現(xiàn)。電感線圈可以經(jīng)過它給負(fù)載提供持續(xù)的電流,以免負(fù)載電流突變,起到平滑電流的作用!在IGBT開關(guān)電源中,就能見到一個由二極管和電阻串連起來構(gòu)成的的續(xù)流電路。這個電路與變壓器原邊并聯(lián)當(dāng)開關(guān)管關(guān)斷時(shí),續(xù)流電路可以釋放掉變壓器線圈中儲存的能量,防止感應(yīng)電壓過高,擊穿開關(guān)管。電路連接圖IGBT模塊并聯(lián)二極管的使用事項(xiàng)一般選擇快速恢復(fù)二極管或者肖特基二極管。 在截止?fàn)顟B(tài)下的IGBT,正向電壓由J2結(jié)承擔(dān),反向電壓由J1結(jié)承擔(dān)。
措施:在三相變壓器次級星形中點(diǎn)與地之間并聯(lián)適當(dāng)電容,就可以減小這種過電壓。與整流器并聯(lián)的其它負(fù)載切斷時(shí),因電源回路電感產(chǎn)生感應(yīng)電勢的過電壓。變壓器空載且電源電壓過零時(shí),初級拉閘,因變壓器激磁電流的突變,在次級感生出很高的瞬時(shí)電壓,這種電壓尖峰值可達(dá)工作電壓的6倍以上。交流電網(wǎng)遭雷擊或電網(wǎng)侵入干擾過電壓,即偶發(fā)性浪涌電壓,都必須加阻容吸收路進(jìn)行保護(hù)。3.直流側(cè)過電壓及保護(hù)當(dāng)負(fù)載斷開時(shí)或快熔斷時(shí),儲存在變壓器中的磁場能量會產(chǎn)生過電壓,顯然在交流側(cè)阻容吸收保護(hù)電路可以抑制這種過電壓,但由于變壓器過載時(shí)儲存的能量比空載時(shí)要大,還不能完全消除。措施:能常采用壓敏吸收進(jìn)行保護(hù)。4.過電流保護(hù)一般加快速熔斷器進(jìn)行保護(hù),實(shí)際上它不能保護(hù)可控硅,而是保護(hù)變壓器線圈。5.電壓、電流上升率的限制4.均流與晶閘管選擇均流不好,很容易燒壞元件。為了解決均流問題,過去加均流電抗器,噪聲很大,效果也不好,一只一只進(jìn)行對比,擰螺絲松緊,很盲目,效果差,噪音大,耗能。我們采用的辦法是:用計(jì)算機(jī)程序軟件進(jìn)行動態(tài)參數(shù)篩選匹配、編號,裝配時(shí)按其號碼順序裝配,很間單。每一只元件上都刻有字,以便下更換時(shí)參考。這樣能使均流系數(shù)可達(dá)到。 IGBT模塊具有節(jié)能、安裝維修方便、散熱穩(wěn)定等特點(diǎn)。浙江進(jìn)口SEMIKRON西門康IGBT模塊
IGBT的靜態(tài)特性主要有伏安特性、轉(zhuǎn)移特性。浙江進(jìn)口SEMIKRON西門康IGBT模塊
并在檢測電阻40上得到檢測信號。因此,這種將檢測電阻40通過引線直接與主工作區(qū)的源區(qū)金屬相接,可以避免主工作區(qū)的工作電流接地電壓對測試的影響。但是,這種方式得到的檢測電流曲線與工作電流曲線并不對應(yīng),如圖4所示,得到的檢測電流與工作電流的比例關(guān)系不固定,在大電流時(shí),檢測電流與工作電流的偏差較大,此時(shí),電流傳感器1的靈敏性較低,從而導(dǎo)致檢測電流的精度和敏感性比較低。針對上述問題,本發(fā)明實(shí)施例提供了igbt芯片及半導(dǎo)體功率模塊,避免了柵電極因?qū)Φ仉娢蛔兓斐傻钠?,提高了檢測電流的精度。為便于對本實(shí)施例進(jìn)行理解,下面首先對本發(fā)明實(shí)施例提供的一種igbt芯片進(jìn)行詳細(xì)介紹。實(shí)施例一:本發(fā)明實(shí)施例提供了一種igbt芯片,圖5為本發(fā)明實(shí)施例提供的一種igbt芯片的結(jié)構(gòu)示意圖,如圖5所示,在igbt芯片上設(shè)置有:工作區(qū)域10、電流檢測區(qū)域20和接地區(qū)域30;其中,在igbt芯片上還包括第1表面和第二表面,且,第1表面和第二表面相對設(shè)置;第1表面上設(shè)置有工作區(qū)域10和電流檢測區(qū)域20的公共柵極單元100,以及,工作區(qū)域10的第1發(fā)射極單元101、電流檢測區(qū)域20的第二發(fā)射極單元201和第三發(fā)射極單元202,其中,第三發(fā)射極單元202與第1發(fā)射極單元101連接。 浙江進(jìn)口SEMIKRON西門康IGBT模塊