什么是上訊數(shù)據(jù)網(wǎng)關(guān)

來源: 發(fā)布時間:2025-05-01

數(shù)據(jù)網(wǎng)關(guān)DG支持自定義敏感數(shù)據(jù)級別和類別,滿足特定業(yè)務(wù)和合規(guī)需求。此外系統(tǒng)內(nèi)置了對常見數(shù)據(jù)類型的敏感數(shù)據(jù)類別和級別,并支持靈活地編輯和修改。任務(wù)調(diào)度與高效并發(fā)執(zhí)行:數(shù)據(jù)網(wǎng)關(guān)DG支持智能任務(wù)調(diào)度,確保任務(wù)高效執(zhí)行,減少對系統(tǒng)資源的依賴,提升整體性能??膳渲没娜蝿?wù)參數(shù):為適應(yīng)不同需求,數(shù)據(jù)網(wǎng)關(guān)DG支持自定義敏感數(shù)據(jù)識別任務(wù)的并發(fā)數(shù)、采樣次數(shù)、采樣范圍等參數(shù)的配置,以更好地適應(yīng)不同的業(yè)務(wù)場景。定時執(zhí)行任務(wù):數(shù)據(jù)網(wǎng)關(guān)DG提供直觀易用的定時執(zhí)行任務(wù)設(shè)置,以確保定期對敏感數(shù)據(jù)進(jìn)行識別,降低潛在風(fēng)險。多數(shù)據(jù)源任務(wù)配置:為了數(shù)據(jù)安全管理,數(shù)據(jù)網(wǎng)關(guān)DG支持配置多數(shù)據(jù)源敏感數(shù)據(jù)識別任務(wù),確保在不同數(shù)據(jù)源中都能有效地發(fā)現(xiàn)潛在的敏感數(shù)據(jù)。結(jié)果打標(biāo)與管理:在任務(wù)結(jié)果中,數(shù)據(jù)網(wǎng)關(guān)DG支持對已識別的敏感數(shù)據(jù)類型進(jìn)行打標(biāo)確認(rèn),以便進(jìn)行更為精細(xì)的敏感數(shù)據(jù)管理。任務(wù)重啟與歷史查看:數(shù)據(jù)網(wǎng)關(guān)DG支持重新發(fā)現(xiàn)任務(wù),同時通過歷史記錄查看已執(zhí)行任務(wù)的詳細(xì)信息。


數(shù)據(jù)網(wǎng)關(guān)是一站式數(shù)據(jù)庫訪問管理平臺。什么是上訊數(shù)據(jù)網(wǎng)關(guān)

什么是上訊數(shù)據(jù)網(wǎng)關(guān),上訊數(shù)據(jù)網(wǎng)關(guān)

上訊數(shù)據(jù)網(wǎng)關(guān)安全可控的數(shù)據(jù)庫訪問操作平臺。數(shù)據(jù)庫訪問操作面臨以下現(xiàn)狀:賬號共享,權(quán)限泛濫,在企業(yè)日常數(shù)據(jù)庫操作中,存在不同用戶共用一個數(shù)據(jù)庫賬號的情況,這樣無法清楚地追蹤個人操作,導(dǎo)致權(quán)限濫用,增加數(shù)據(jù)泄露風(fēng)險,且難以審計(jì)和追蹤每個用戶的具體行為。流程缺失,事故頻繁,數(shù)據(jù)庫的變更和高危操作缺少統(tǒng)一的管控流程,存在數(shù)據(jù)誤刪除或惡意刪除風(fēng)險。對于SQL缺少統(tǒng)一的審核流程,不規(guī)范SQL的執(zhí)行會對數(shù)據(jù)庫的穩(wěn)定性造成影響。敏感數(shù)據(jù),無法遮掩,數(shù)據(jù)庫中的敏感數(shù)據(jù),如個人信息、企業(yè)機(jī)密數(shù)據(jù)等,如果不進(jìn)行適當(dāng)?shù)?**處理,可能會導(dǎo)致敏感數(shù)據(jù)被非法獲取和傳播,帶來嚴(yán)重的安全和法律風(fēng)險。審計(jì)不全,追溯困難,如果數(shù)據(jù)庫SQL審計(jì)不***,那么在發(fā)生數(shù)據(jù)泄露、數(shù)據(jù)篡改等安全事件時,將難以追溯事件的來源和過程,且無法滿足合規(guī)性要求,增加企業(yè)的合規(guī)性風(fēng)險。 什么是上訊數(shù)據(jù)網(wǎng)關(guān)報(bào)價數(shù)據(jù)庫操作管理面臨著諸多挑戰(zhàn),包括數(shù)據(jù)庫數(shù)量管理、數(shù)據(jù)庫變更管理、權(quán)限控制和敏感數(shù)據(jù)保護(hù)等方面。

什么是上訊數(shù)據(jù)網(wǎng)關(guān),上訊數(shù)據(jù)網(wǎng)關(guān)

在當(dāng)今數(shù)字化的商業(yè)環(huán)境中,數(shù)據(jù)網(wǎng)管對于保障業(yè)務(wù)連續(xù)性至關(guān)重要。無論是在線交易、客戶服務(wù)還是內(nèi)部運(yùn)營,任何網(wǎng)絡(luò)中斷都可能導(dǎo)致業(yè)務(wù)停滯和經(jīng)濟(jì)損失。數(shù)據(jù)網(wǎng)管通過建立冗余網(wǎng)絡(luò)架構(gòu)來確保業(yè)務(wù)的連續(xù)性。這意味著在主要網(wǎng)絡(luò)組件出現(xiàn)故障時,備用設(shè)備和鏈路能夠立即接管,確保數(shù)據(jù)的傳輸不受影響。他們還會定期進(jìn)行業(yè)務(wù)影響分析,評估不同網(wǎng)絡(luò)故障對業(yè)務(wù)流程的潛在影響,并制定相應(yīng)的應(yīng)對策略。例如,對于一個依賴實(shí)時數(shù)據(jù)處理的金融機(jī)構(gòu),數(shù)據(jù)網(wǎng)管會確保網(wǎng)絡(luò)的高可用性,以避免交易延遲或中斷。他們會監(jiān)控網(wǎng)絡(luò)設(shè)備的運(yùn)行狀態(tài),提前發(fā)現(xiàn)潛在的故障隱患,并及時進(jìn)行維護(hù)和升級。通過這些努力,數(shù)據(jù)網(wǎng)管為企業(yè)提供了一個穩(wěn)定可靠的網(wǎng)絡(luò)環(huán)境,使業(yè)務(wù)能夠持續(xù)運(yùn)行,不受網(wǎng)絡(luò)問題的干擾!

數(shù)據(jù)網(wǎng)關(guān)DG提供虛擬的數(shù)據(jù)訪問功能,通過字段級別的權(quán)限劃分和細(xì)顆粒度的權(quán)限管控,確保對訪問數(shù)據(jù)源的用戶進(jìn)行有效的權(quán)限管理,保障數(shù)據(jù)的安全和隱私。查詢大表控制:數(shù)據(jù)網(wǎng)關(guān)DG能夠有效地控制對大表的查詢結(jié)果集訪問條數(shù),優(yōu)化查詢性能,確保系統(tǒng)穩(wěn)定運(yùn)行。提供內(nèi)置的SQL工作臺,通過瀏覽器Web頁面對數(shù)據(jù)庫進(jìn)行操作。用戶可以通過友好的圖形化界面進(jìn)行數(shù)據(jù)庫查詢、修改、管理等操作,無需額外的客戶端軟件,增強(qiáng)了用戶操作的靈活性和便利性??蛻舳撕凸ぞ咧С郑和ㄟ^使用數(shù)據(jù)網(wǎng)關(guān)的JDBC驅(qū)動,用戶可以在數(shù)據(jù)庫客戶端(如DBeaver、Datagrip)和BI分析工具(如SmartBI、帆軟Report)中進(jìn)行數(shù)據(jù)庫操作,拓展了數(shù)據(jù)訪問和分析的應(yīng)用場景。


上訊數(shù)據(jù)網(wǎng)關(guān)DG可細(xì)顆粒度權(quán)限管控、敏感數(shù)據(jù)動態(tài)脫敏、SQL審核、高危操作管控等.

什么是上訊數(shù)據(jù)網(wǎng)關(guān),上訊數(shù)據(jù)網(wǎng)關(guān)

數(shù)據(jù)雷達(dá)提供了多種分類分級算法,包括AI大模型算法、正則算法、字典算法和應(yīng)用算法,旨在滿足用戶不同的分類需求,提高數(shù)據(jù)分類的準(zhǔn)確性和效率。AI大模型算法:(1)特征提取與模型訓(xùn)練:用戶可根據(jù)業(yè)務(wù)需要新建AI算法名稱,并支持?jǐn)?shù)據(jù)庫或文件兩種方式的特征提取,提取的算法特征用于訓(xùn)練AI算法模型。(2)自動化分類分級:訓(xùn)練完成后,系統(tǒng)自動切換至該算法模型,利用AI大模型實(shí)現(xiàn)自動化打標(biāo),降低人工干預(yù)和成本,提高工作效率。(3)支持多組特征數(shù)據(jù)操作:用戶可進(jìn)行多組特征數(shù)據(jù)的追加和覆蓋操作,靈活應(yīng)對不同的數(shù)據(jù)特征需求。數(shù)據(jù)網(wǎng)關(guān)DG支持配置多數(shù)據(jù)源敏感數(shù)據(jù)識別任務(wù),確保在不同數(shù)據(jù)源中都能有效地發(fā)現(xiàn)潛在的敏感數(shù)據(jù)。輔助上訊數(shù)據(jù)網(wǎng)關(guān)服務(wù)電話

上訊數(shù)據(jù)網(wǎng)關(guān)DG包括被動式審批授權(quán)和主動式申請授權(quán),支持對提交的申請進(jìn)行同意、駁回等操作.什么是上訊數(shù)據(jù)網(wǎng)關(guān)

數(shù)據(jù)分類分級落地面臨的挑戰(zhàn),傳統(tǒng)的數(shù)據(jù)分類分級技術(shù)無法滿足快速增長的大規(guī)模數(shù)據(jù)的需求。詞法分析的局限性導(dǎo)致數(shù)據(jù)分類分級的準(zhǔn)確度較低,基于字段名稱和注釋的分類分級規(guī)則可復(fù)制性比較差,數(shù)據(jù)分類分級規(guī)則的編寫和維護(hù)需要大量人力介入。上訊數(shù)據(jù)雷達(dá),基于AI的智能數(shù)據(jù)分類分級工具。自動化的數(shù)據(jù)特征提取和數(shù)據(jù)模型訓(xùn)練,消除了規(guī)則的編寫和維護(hù)成本基于AI大模型,使用人員只需要針對一個數(shù)據(jù)類型準(zhǔn)備幾千條-幾萬條的訓(xùn)練數(shù)據(jù)就可以實(shí)現(xiàn)數(shù)據(jù)類型識別能力的訓(xùn)練,不需要針對不同的數(shù)據(jù)類型編寫和維護(hù),**降低了傳統(tǒng)數(shù)據(jù)分類分級技術(shù)涉及的規(guī)則編寫和維護(hù)成本。什么是上訊數(shù)據(jù)網(wǎng)關(guān)