冷凍電鏡技術是在20世紀70年代提出的,早在20世紀70年代科學家們就利用冷凍電鏡研究病毒分子的結構,頭次提出了冷凍電鏡技術的原理、方法以及流程的概念。冷凍電鏡的發(fā)展:冷凍電鏡到底是什么?從上世紀70年代興起至今,冷凍電子顯微技術(cryo-EM)已經跨越了40多年的發(fā)展歷史,經歷了冷凍制樣、單顆粒圖像分析和三維重構算法等關鍵性技術的突破。通俗而言,冷凍電鏡就是在傳統(tǒng)透射電子顯微鏡之上,加上了低溫傳輸系統(tǒng)和冷凍防污染系統(tǒng)。冷凍電子顯微鏡技術之樣品成像:低劑量輻照成像,普通樣品材料在進行表征時,電子劑量越高成像質量越好。寧波透射電子顯微鏡技術平臺
單顆粒冷凍電鏡技術:生物大分子快速冷凍后,在低溫下利用透射電子顯微鏡對結構均一、分散的全同樣品顆粒進行成像,再經圖像處理及重構計算獲得樣品的三維結構??裳芯可锎蠓肿釉谌芤褐械慕Y構及構象變化、無需結晶、所需樣品量相對較少,適合于蛋白質、病毒等生物大分子及其復合物的結構生物學研究。樣品制備:可以根據樣品、電鏡載網和其他使用條件,摸索合適的單顆粒樣品制備條件,純化、收集濃度范圍從幾微升50nM至5uM濃度的蛋白溶液來制備單顆粒電鏡樣品。在-196℃時,組織中的生物大分子能夠長期保持穩(wěn)定性、細胞活性及組織微觀結構,同時,在低溫下,生物樣品耐受電子輻照劑量增強,且其在電鏡鏡筒的高真空環(huán)境中脫水變形的問題也得以解決。Vitrobot和EMGP2均能夠提供快速、簡單、可重復的安自動化樣品玻璃化制備過程,其在恒定的物理和機械條件下(如溫度、相對濕度、吸濕條件和冷凍速度)對樣品進行冷凍固定確保生物樣品在低溫狀態(tài)下仍保持天然構象。廈門透射電鏡技術原理冷凍電鏡技術之冷凍蝕刻電子顯微鏡優(yōu)點:能耐受電子束轟擊和長期保存。
冷凍電鏡技術在結構生物學中的應用:冷凍電鏡技術主要應用在單個蛋白質分子結構的分析方面。此外,冷凍電子顯微鏡技術還將普遍應用于細胞組織的超微結構解析,對解開生命活動的規(guī)律和機制等奧秘會產生更大影響。有人創(chuàng)造了利用冷凍電鏡單顆粒分析技術解析至近原子分辨率的分子量較小的生物大分子的記錄。施一公研究組解析了γ-secretase蛋白質和RyR-1蛋白質。研究組解析了Mammalianrespirasome蛋白質。隨著越來越多蛋白質神秘面紗的揭開,我們可以更好地解釋各種各樣的生命活動發(fā)生的原因和機理。利用冷凍電鏡技術觀察到的蛋白質結構,我們可以定向改造或構建新的蛋白質用于科研或醫(yī)療領域。
冷凍電鏡技術:隨著技術的不斷進步和人類對于生命科學領域知識的不斷積累,藥物研發(fā)越來越走向理性化,包括法規(guī)體系的建立和優(yōu)化、藥品質量控制模式的變遷走向QbD階段?;诮Y構的藥物設計已經逐漸成為藥物開發(fā)設計的主流,與此同時冷凍電鏡技術也在蓬勃發(fā)展。冷凍電鏡單顆粒分析技術和微晶電子衍射技術不只能解析近原子分辨率的結構,而且能解析傳統(tǒng)結構生物學無法解析的結構,幫助確認藥物靶點,拓展可用藥物靶點的研究范圍和完善基于靶點結構的藥物設計。冷凍電子斷層掃描技術在不久的未來可能提供細胞原位觀察藥物與靶點的作用。冷凍電子顯微鏡技術具有研究對象普遍、樣品需求量少、更接近生理狀態(tài)等獨特優(yōu)勢。
冷凍電鏡技術揭示生物分子細節(jié):在透射電子顯微鏡下,高能電子束穿透每一個分子,如同X光穿過人的身體一樣,可以拍攝到分子的形貌和它內部的結構信息。科學家們利用計算機將樣本里的每一個分子提取出來,把相似的分子予以歸類,然后疊加、平均獲得其內部結構更為精細的圖像,由此得到分子不同方向的二維結構,較后經過計算機三維重構算法,可以得到分子的三維模型。這一過程被稱為冷凍電鏡三維重構解析。冷凍電鏡技術的發(fā)展,使得現(xiàn)在的人類可以對細胞內的生命活動有更多了解。未來,科學家將借助冷凍電鏡技術繼續(xù)對復雜生命體的解讀。冷凍電鏡技術,是在低溫下使用透射電子顯微鏡觀察樣品的顯微技術。湖州冷凍透射電子顯微鏡技術應用
冷凍電鏡技術的基本原理是將生物大分子溶液置于電鏡載網上形成一層非常薄的水膜。寧波透射電子顯微鏡技術平臺
冷凍電鏡技術未來之路在何方?除了蛋白等生物大分子外,生物樣品還有很重要的一面是細胞和組織。即使是目前有很多重要的蛋白結構都得到了埃米級別的解析,但由于它們都是純化出來的,已經脫離了原來位置,就如同一片樹葉脫離了大樹,研究的再深刻,目前也只是一葉遮目,不要說推測這片樹葉在森林里的位置,即使是在哪顆特定大樹上的生長部位和結構都很難說。因此解析細胞或組織這樣大尺度的高分辨精細結構具有更普遍的生物學意義。寧波透射電子顯微鏡技術平臺