隨著人工成本的增加和制造業(yè)的升級(jí)需求,加上計(jì)算機(jī)視覺(jué)技術(shù)的快速發(fā)展,越來(lái)越多機(jī)器視覺(jué)方案滲透到各領(lǐng)域,到2016年我國(guó)機(jī)器視覺(jué)市場(chǎng)規(guī)模已達(dá)近70億元。機(jī)器視覺(jué)中,缺陷檢測(cè)功能,是機(jī)器視覺(jué)應(yīng)用得多的功能之一,主要檢測(cè)產(chǎn)品表面的各種信息。在現(xiàn)代工業(yè)自動(dòng)化生產(chǎn)中,連續(xù)大批量生產(chǎn)中每個(gè)制程都有一定的次品率,單獨(dú)看雖然比率很小,但相乘后卻成為企業(yè)難以提高良率的瓶頸,并且在經(jīng)過(guò)完整制程后再剔除次品成本會(huì)高很多(例如,如果錫膏印刷工序存在定位偏差,且該問(wèn)題直到芯片貼裝后的在線(xiàn)測(cè)試才被發(fā)現(xiàn),那么返修的成本將會(huì)是原成本的100倍以上),因此及時(shí)檢測(cè)及次品剔除對(duì)質(zhì)量控制和成本控制是非常重要的,也是制造業(yè)進(jìn)一步升級(jí)的重要基石。在檢測(cè)行業(yè),與人類(lèi)視覺(jué)相比,機(jī)器視覺(jué)優(yōu)勢(shì)明顯1、精確度高:人類(lèi)視覺(jué)是64灰度級(jí),且對(duì)微小目標(biāo)分辨力弱;機(jī)器視覺(jué)可顯著提高灰度級(jí),同時(shí)可觀測(cè)微米級(jí)的目標(biāo);2、速度快:人類(lèi)是無(wú)法看清快速運(yùn)動(dòng)的目標(biāo)的,機(jī)器快門(mén)時(shí)間則可達(dá)微秒級(jí)別;3、穩(wěn)定性高:機(jī)器視覺(jué)解決了人類(lèi)一個(gè)非常嚴(yán)重的問(wèn)題,不穩(wěn)定,人工目檢是勞動(dòng)非??菰锖托量嗟男袠I(yè),無(wú)論你設(shè)計(jì)怎樣的獎(jiǎng)懲制度,都會(huì)發(fā)生比較高的漏檢率。半導(dǎo)體行業(yè)檢測(cè)設(shè)備,Wafer缺陷檢測(cè)設(shè)備。蕪湖視覺(jué)檢測(cè)設(shè)備電話(huà)
結(jié)構(gòu)方法的核是將物體分解成了模式或模式基元,而不同的物體結(jié)構(gòu)有不同的基元串(或稱(chēng)字符串),通過(guò)對(duì)未知物體利用給定的模式基元求出編碼邊界,得到字符串,再根據(jù)字符串判斷它的屬類(lèi)。在特征生成上,很多新算法不斷出現(xiàn),包括基于小波、小波包、分形的特征,以及獨(dú)二分量分析;還有關(guān)子支持向量機(jī),變形模板匹配,線(xiàn)性以及非線(xiàn)性分類(lèi)器的設(shè)計(jì)等都在不斷延展。3、深度學(xué)習(xí)帶來(lái)的突破傳統(tǒng)的機(jī)器學(xué)習(xí)在特征提取上主要依靠人來(lái)分析和建立邏輯,而深度學(xué)習(xí)則通過(guò)多層感知機(jī)模擬大腦工作,構(gòu)建深度神經(jīng)網(wǎng)絡(luò)(如卷積神經(jīng)網(wǎng)絡(luò)等)來(lái)學(xué)習(xí)簡(jiǎn)單特征、建立復(fù)雜特征、學(xué)習(xí)映射并輸出,訓(xùn)練過(guò)程中所有層級(jí)都會(huì)被不斷優(yōu)化。在具體的應(yīng)用上,例如自動(dòng)ROI區(qū)域分割;標(biāo)點(diǎn)定位(通過(guò)防真視覺(jué)可靈活檢測(cè)未知瑕疵);從重噪聲圖像重檢測(cè)無(wú)法描述或量化的瑕疵如橘皮瑕疵;分辨玻璃蓋板檢測(cè)中的真假瑕疵等。隨著越來(lái)越多的基于深度學(xué)習(xí)的機(jī)器視覺(jué)軟件推向市場(chǎng)(包括瑞士的vidi,韓國(guó)的SUALAB,香港的應(yīng)科院等),深度學(xué)習(xí)給機(jī)器視覺(jué)的賦能會(huì)越來(lái)越明顯。4、3d視覺(jué)的發(fā)展3D視覺(jué)還處于起步階段,許多應(yīng)用程序都在使用3D表面重構(gòu),包括導(dǎo)航、工業(yè)檢測(cè)、逆向工程、測(cè)繪、物體識(shí)別、測(cè)量與分級(jí)等。合肥顆粒度檢測(cè)設(shè)備聯(lián)系人高效檢測(cè),大數(shù)據(jù)采集分析,光學(xué)檢測(cè)設(shè)備、工業(yè)檢測(cè)設(shè)備。
本發(fā)明具體涉及一種計(jì)算機(jī)主板視覺(jué)檢測(cè)設(shè)備,屬于計(jì)算機(jī)技術(shù)領(lǐng)域。背景技術(shù):目前,隨著視覺(jué)檢測(cè)的不斷發(fā)展,視覺(jué)檢測(cè)在產(chǎn)品質(zhì)量檢測(cè)方法具有極其重要的作用。尤其是對(duì)于零部件較多的部件來(lái)說(shuō),利用視覺(jué)攝像機(jī)對(duì)產(chǎn)品拍攝高清照片,然后利用圖像處理器與對(duì)比庫(kù)中的合格照片信息進(jìn)行比對(duì),即可快速的完成對(duì)產(chǎn)品的外觀,比如產(chǎn)品組裝零件的位置、數(shù)量等進(jìn)行快速檢測(cè),可以實(shí)現(xiàn)快速的檢測(cè)。尤其是對(duì)于計(jì)算機(jī)主板這種焊接的電子元件較多,采用肉眼難以快速實(shí)現(xiàn)檢測(cè)的部件來(lái)說(shuō),視覺(jué)檢測(cè)可以起到快速、流水的檢測(cè)目的。但是,目前的檢測(cè)一般只能實(shí)現(xiàn)人工定位、人工上料,影響視覺(jué)檢測(cè)的效率與效果,無(wú)法實(shí)現(xiàn)流水式檢測(cè)作業(yè)。技術(shù)實(shí)現(xiàn)要素:本發(fā)明的目的在于提供一種計(jì)算機(jī)主板視覺(jué)檢測(cè)設(shè)備,以解決上述背景技術(shù)中提出的問(wèn)題。為實(shí)現(xiàn)上述目的,本發(fā)明提供如下技術(shù)方案:一種計(jì)算機(jī)主板視覺(jué)檢測(cè)設(shè)備,其包括前基座、后基座、主板輸送機(jī)構(gòu)、檢測(cè)上料輸送機(jī)構(gòu)、視覺(jué)檢測(cè)機(jī)構(gòu)、檢測(cè)定位與前移機(jī)構(gòu)、頂升定位機(jī)構(gòu)和檢測(cè)下料機(jī)構(gòu),其特征在于,所述前基座和后基座之間設(shè)置有沿著其長(zhǎng)度延伸的方向設(shè)置的所述主板輸送機(jī)構(gòu)。
機(jī)器視覺(jué)上游有光源、鏡頭、工業(yè)相機(jī)、圖像采集卡、圖像處理軟件等軟硬件提供商,中游有集成和整機(jī)設(shè)備提供商,行業(yè)下游應(yīng)用較廣,主要下游市場(chǎng)包括電子制造行業(yè)、汽車(chē)、印刷包裝、、農(nóng)業(yè)、醫(yī)藥、紡織和交通等領(lǐng)域。機(jī)器視覺(jué)全球市場(chǎng)主要分布在北美、歐洲、日本、中國(guó)等地區(qū),根據(jù)統(tǒng)計(jì)數(shù)據(jù),2014年,全球機(jī)器視覺(jué)系統(tǒng)及部件市場(chǎng)規(guī)模是,2015年全球機(jī)器視覺(jué)系統(tǒng)及部件市場(chǎng)規(guī)模是42億美元,2016年全球機(jī)器視覺(jué)系統(tǒng)及部件市場(chǎng)規(guī)模是62億美元,2002-2016年市場(chǎng)年均復(fù)合增長(zhǎng)率為12%左右。而機(jī)器視覺(jué)系統(tǒng)集成,根據(jù)北美市場(chǎng)數(shù)據(jù)估算,大約是視覺(jué)系統(tǒng)及部件市場(chǎng)的6倍。中國(guó)機(jī)器視覺(jué)起步于80年代的技術(shù)引進(jìn)。檢測(cè)設(shè)備是保障高凈價(jià)值工業(yè)產(chǎn)品質(zhì)量的后道檢測(cè)工藝。
4、3d視覺(jué)的發(fā)展3D視覺(jué)還處于起步階段,許多應(yīng)用程序都在使用3D表面重構(gòu),包括導(dǎo)航、工業(yè)檢測(cè)、逆向工程、測(cè)繪、物體識(shí)別、測(cè)量與分級(jí)等,但精度問(wèn)題限制了3D視覺(jué)在很多場(chǎng)景的應(yīng)用,目前工程上先鋪開(kāi)的應(yīng)用是物流里的標(biāo)準(zhǔn)件體積測(cè)量,相信未來(lái)這塊潛力巨大。要全免替代人工目檢,機(jī)器視覺(jué)還有諸多難點(diǎn)有待攻破:1、光源與成像:機(jī)器視覺(jué)中質(zhì)量的成像是步,由于不同材料物體表面反光、折射等問(wèn)題都會(huì)影響被測(cè)物體特征的提取,因此光源與成像可以說(shuō)是機(jī)器視覺(jué)檢測(cè)要攻克的個(gè)難關(guān)。比如現(xiàn)在玻璃、反光表面的劃痕檢測(cè)等,很多時(shí)候問(wèn)題都卡在不同缺陷的集成成像上。2、重噪音中低對(duì)比度圖像中的特征提?。涸谥卦胍舡h(huán)境下,真假瑕疵的鑒別很多時(shí)候較難,這也是很多場(chǎng)景始終存在一定誤檢率的原因,但這塊通過(guò)成像和邊緣特征提取的快速發(fā)展,已經(jīng)在不斷取得各種突破。3、對(duì)非預(yù)期缺陷的識(shí)別:在應(yīng)用中,往往是給定一些具體的缺陷模式,使用機(jī)器視覺(jué)來(lái)識(shí)別它們到底有沒(méi)有發(fā)生。但經(jīng)常遇到的情況是,許多明顯的缺陷,因?yàn)橹皼](méi)有發(fā)生過(guò),或者發(fā)生的模式過(guò)分多樣,而被漏檢。如果換做是人,雖然在操作流程文件中沒(méi)讓他去檢測(cè)這個(gè)缺陷,但是他會(huì)注意到,從而有較大幾率抓住它。工業(yè)品檢測(cè)的難度在于原來(lái)檢測(cè)方法是利用傳統(tǒng)方式,無(wú)法滿(mǎn)足現(xiàn)代工業(yè)需求?;茨媳砻嫘蚊矙z測(cè)設(shè)備聯(lián)系人
晶棒輔助抓取,識(shí)別錯(cuò)誤率低于0.02%。蕪湖視覺(jué)檢測(cè)設(shè)備電話(huà)
每個(gè)所述黑白相機(jī)和每個(gè)所述彩色相機(jī)分別連接一個(gè)所述鏡頭,并分別連接一個(gè)所述環(huán)形光源或一個(gè)所述同軸光源;所述至少一個(gè)環(huán)形光源和所述至少一個(gè)同軸光源用于在開(kāi)啟狀態(tài)下發(fā)出光源;所述至少兩個(gè)黑白相機(jī)和所述至少兩個(gè)彩色相機(jī)用于在開(kāi)啟狀態(tài)下進(jìn)行拍照,并向所述數(shù)據(jù)處理單元發(fā)送拍照結(jié)果;數(shù)據(jù)處理單元,用于根據(jù)所述待檢物的位置信息和所述拍照結(jié)果進(jìn)行圖像信息處理,確定所述待檢物的缺陷位置。2.根據(jù)權(quán)利要求1所述的設(shè)備,其特征在于,所述黑白相機(jī)和所述彩色相機(jī)的總數(shù)是根據(jù)所述待檢物的尺寸和所述黑白相機(jī)和所述彩色相機(jī)的視野范圍和像素屬性確定的。3.根據(jù)權(quán)利要求2所述的設(shè)備,其特征在于,所述黑白相機(jī)和所述彩色相機(jī)的總數(shù)根據(jù)下式確定4.根據(jù)權(quán)利要求1至3中任意一項(xiàng)所述的設(shè)備,其特征在于,所述環(huán)形光源具體用于在開(kāi)啟狀態(tài)下發(fā)出至少一個(gè)預(yù)設(shè)角度的光。5.根據(jù)權(quán)利要求1至3中任意一項(xiàng)所述的設(shè)備,其特征在于,每個(gè)所述黑白相機(jī)和/或每個(gè)所述彩色相機(jī)上方設(shè)置一個(gè)所述環(huán)形光源或一個(gè)所述同軸光源;或者,至少一個(gè)所述黑白相機(jī)和/或所述彩色相機(jī)上方設(shè)置一個(gè)所述環(huán)形光源和一個(gè)所述同軸光源。6.根據(jù)權(quán)利要求1至3中任意一項(xiàng)所述的設(shè)備,其特征在于。蕪湖視覺(jué)檢測(cè)設(shè)備電話(huà)