AFM可以用來對細(xì)胞進(jìn)行形態(tài)學(xué)觀察,并進(jìn)行圖像的分析。通過觀察細(xì)胞表面形態(tài)和三維結(jié)構(gòu),可以獲得細(xì)胞的表面積、厚度、寬度和體積等的量化參數(shù)等。例如,利用AFM可以對后的細(xì)胞表面形態(tài)的改變、造骨細(xì)胞在加入底物(鈷鉻、鈦、鈦釩等)后細(xì)胞形態(tài)和細(xì)胞彈性的變化、GTP對胰腺外分泌細(xì)胞囊泡高度的影響進(jìn)行研究。利用AFM還可以對自由基損傷的紅細(xì)胞膜表面精細(xì)結(jié)構(gòu)的研究,直接觀察到自由基損傷,以及加女貞子保護(hù)作用后,對紅細(xì)胞膜分子形態(tài)學(xué)的影響;而這些規(guī)格的選擇是依照樣品的特性,以及操作模式的不同,而選擇不同類型的探針。三明原子力顯微鏡測試廠家
在原子力顯微鏡(AFM)的系統(tǒng)中,將信號經(jīng)由激光檢測器取入之后,在反饋系統(tǒng)中會(huì)將此信號當(dāng)作反饋信號,作為內(nèi)部的調(diào)整信號,并驅(qū)使通常由壓電陶瓷管制作的掃描器做適當(dāng)?shù)囊苿?dòng),以保持樣品與針尖保持一定的作用力。總結(jié)AFM系統(tǒng)使用壓電陶瓷管制作的掃描器精確控制微小的掃描移動(dòng)。壓電陶瓷是一種性能奇特的材料,當(dāng)在壓電陶瓷對稱的兩個(gè)端面加上電壓時(shí),壓電陶瓷會(huì)按特定的方向伸長或縮短。而伸長或縮短的尺寸與所加的電壓的大小成線性關(guān)系。即可以通過改變電壓來控制壓電陶瓷的微小伸縮。通常把三個(gè)分別X,Y,Z方向的壓電陶瓷塊組成三角架的形狀,通過控制X,Y方向伸縮達(dá)到驅(qū)動(dòng)探針在樣品表面掃描的目的;通過控制Z方向壓電陶瓷的伸縮達(dá)到控制探針與樣品之間距離的目的。原子力顯微鏡(AFM)便是結(jié)合以上三個(gè)部分來將樣品的表面特性呈現(xiàn)出來的:在原子力顯微鏡(AFM)的系統(tǒng)中,使用微小懸臂(cantilever)來感測針尖與樣品之間的相互作用,這作用力會(huì)使微懸臂擺動(dòng),再利用激光將光照射在懸臂的末端,當(dāng)擺動(dòng)形成時(shí),會(huì)使反射光的位置改變而造成偏移量,此時(shí)激光檢測器會(huì)記錄此偏移量,也會(huì)把此時(shí)的信號給反饋系統(tǒng),以利于系統(tǒng)做適當(dāng)?shù)恼{(diào)整。 安陽原子力顯微鏡測試服務(wù)位置檢測部分原子力顯微鏡在原子力顯微鏡(AFM)的系統(tǒng)中,當(dāng)針尖與樣品之間有了交互作用之后;
原子力顯微鏡的工作模式是以針尖與樣品之間的作用力的形式來分類的。主要有以下3種操作模式:接觸模式(contactmode),非接觸模式(non-contactmode)和敲擊模式(tappingmode)。接觸模式從概念上來理解,接觸模式是AFM直接的成像模式。AFM在整個(gè)掃描成像過程之中,探針針尖始終與樣品表面保持緊密的接觸,而相互作用力是排斥力。掃描時(shí),懸臂施加在針尖上的力有可能破壞試樣的表面結(jié)構(gòu),因此力的大小范圍在10-10~10-6N。若樣品表面柔嫩而不能承受這樣的力,便不宜選用接觸模式對樣品表面進(jìn)行成像。非接觸模式非接觸模式探測試樣表面時(shí)懸臂在距離試樣表面上方5~10nm的距離處振蕩。這時(shí),樣品與針尖之間的相互作用由范德華力控制,通常為10-12N,樣品不會(huì)被破壞,而且針尖也不會(huì)被污染,特別適合于研究柔嫩物體的表面。這種操作模式的不利之處在于要在室溫大氣環(huán)境下實(shí)現(xiàn)這種模式十分困難。因?yàn)闃悠繁砻娌豢杀苊獾貢?huì)積聚薄薄的一層水,它會(huì)在樣品與針尖之間搭起一小小的毛細(xì)橋,將針尖與表面吸在一起,從而增加對表面的壓力。;
原子力顯微鏡(AtomicForceMicroscope,簡稱AFM)利用微懸臂感受和放大懸臂上尖細(xì)探針與受測樣品原子之間的作用力,從而達(dá)到檢測的目的,具有原子級的分辨率;由于原子力顯微鏡既可以觀察導(dǎo)體,也可以觀察非導(dǎo)體,從而彌補(bǔ)了掃描隧道顯微鏡的不足。原子力顯微鏡是由IBM公司蘇黎世研究中心的格爾德·賓寧于一九八五年所發(fā)明的,其目的是為了使非導(dǎo)體也可以采用類似掃描探針顯微鏡(SPM)的觀測方法。原子力顯微鏡(AFM)與掃描隧道顯微鏡(STM)差別在于并非利用電子隧穿效應(yīng),而是檢測原子之間的接觸,原子鍵合,范德瓦耳斯力或卡西米爾效應(yīng)等來呈現(xiàn)樣品的表面特性、;它主要由帶針尖的微懸臂、微懸臂運(yùn)動(dòng)檢測裝置、監(jiān)控其運(yùn)動(dòng)的反饋回路;
原子力顯微鏡是在1986年由掃描隧道顯微鏡(ScanningTunnelingMicroscope)的發(fā)明者之一的葛賓尼(GerdBinnig)博士在美國斯坦福大學(xué)與C.FQuate和C.Gerber等人研制成功的;[1]它主要由帶針尖的微懸臂、微懸臂運(yùn)動(dòng)檢測裝置、監(jiān)控其運(yùn)動(dòng)的反饋回路、使樣品進(jìn)行掃描的壓電陶瓷掃描器件、計(jì)算機(jī)控制的圖像采集、顯示及處理系統(tǒng)組成。微懸臂運(yùn)動(dòng)可用如隧道電流檢測等電學(xué)方法或光束偏轉(zhuǎn)法、干涉法等光學(xué)方法檢測,當(dāng)針尖與樣品充分接近相互之間存在短程相互斥力時(shí),檢測該斥力可獲得表面原子級分辨圖像,一般情況下分辨率也在納米級水平。AFM測量對樣品無特殊要求,可測量固體表面、吸附體系等;由探針得到探針-樣品相互作用的強(qiáng)度,來改變加在樣品掃描器垂直方向的電壓;江西原子力顯微鏡測試系統(tǒng)
AFM在整個(gè)掃描成像過程之中,探針針尖始終與樣品表面保持緊密的接觸,而相互作用力是排斥力。三明原子力顯微鏡測試廠家
敲擊模式介于接觸模式和非接觸模式之間,是一個(gè)雜化的概念。懸臂在試樣表面上方以其共振頻率振蕩,針尖是周期性地短暫地接觸/ 敲擊樣品表面。這就意味著針尖接觸樣品時(shí)所產(chǎn)生的側(cè)向力被明顯地減小了。因此當(dāng)檢測柔嫩的樣品時(shí),AFM的敲擊模式是好的選擇之一。一旦AFM開始對樣品進(jìn)行成像掃描,裝置隨即將有關(guān)數(shù)據(jù)輸入系統(tǒng),如表面粗糙度、平均高度、峰谷峰頂之間的最大距離等,用于物體表面分析。同時(shí),AFM 還可以完成力的測量工作,測量懸臂的彎曲程度來確定針尖與樣品之間的作用力大小。三明原子力顯微鏡測試廠家