普陀區(qū)怎樣科學(xué)計(jì)算軟件比較

來源: 發(fā)布時(shí)間:2025-03-28

WhittakerM - Whittaker 函數(shù)Zeta - Zeta 函數(shù)erf, … - 誤差函數(shù),補(bǔ)充的誤差函數(shù)和虛數(shù)誤差函數(shù)harmonic - 調(diào)和函數(shù)hypergeom - 廣義的超越函數(shù)pochhammer - 一般的pochhammer函數(shù)polylog - 一般的polylogarithm函數(shù)第14章 線性代數(shù)14.1 ALGEBRA(代數(shù))中矩陣,矢量和數(shù)組14.2 LINALG軟件包簡(jiǎn)介14.3數(shù)據(jù)結(jié)構(gòu)矩陣matrices(小寫)矢量vectors(矢量)convert/matrix - 將數(shù)組,列表,Matrix 轉(zhuǎn)換成matrixconvert/vector - 將列表,數(shù)組或Vector 轉(zhuǎn)換成矢量vectorlinalg[matrix] - 生成矩陣matrix(小寫)linalg[vector] - 生成矢量vector(小寫)選擇適合自己需求的科學(xué)計(jì)算軟件,可以提高工作效率和成果質(zhì)量。普陀區(qū)怎樣科學(xué)計(jì)算軟件比較

普陀區(qū)怎樣科學(xué)計(jì)算軟件比較,科學(xué)計(jì)算軟件

14.4 惰性函數(shù)Det - 惰性行列式運(yùn)算符Eigenvals - 數(shù)值型矩陣的特征值和特征向量Hermite, Smith - 矩陣的Hermite 和Smith 標(biāo)準(zhǔn)型14.5 LinearAlgebra函數(shù)Matrix 定義矩陣Add 加/減矩陣Adjoint 伴隨矩陣BackwardSubstitute 求解 A . X = B,其中 A 為上三角型行階梯矩陣BandMatrix 帶狀矩陣Basis 返回向量空間的一組基SumBasis 返回向量空間直和的一組基IntersectionBasis 返回向量空間交的一組基BezoutMatrix 構(gòu)造兩個(gè)多項(xiàng)式的 Bezout 矩陣BidiagonalForm 將矩陣約化為雙對(duì)角型CharacteristicMatrix 構(gòu)造特征矩陣閔行區(qū)怎樣科學(xué)計(jì)算軟件價(jià)格在科學(xué)研究和工程技術(shù)中,科學(xué)計(jì)算軟件已成為不可或缺的工具。

普陀區(qū)怎樣科學(xué)計(jì)算軟件比較,科學(xué)計(jì)算軟件

Octave的**由一組內(nèi)置的(built-in)矩陣運(yùn)算語言(如四則運(yùn)算)和可加載函數(shù)(Loadable Function)組成(例如求矩陣逆inv),其余能在**語言之上實(shí)現(xiàn)而且性能開銷不會(huì)***增加的函數(shù)調(diào)用則一般以O(shè)ctave腳本的形式存在(例如求解方程組的fsolve函數(shù))。Octave解釋器會(huì)自動(dòng)處理各種不同類型的調(diào)用。Octave支持?jǐn)?shù)據(jù)建構(gòu),也支持基本的面向?qū)ο缶幊?,但通常仍把它?dāng)作面向過程的程序設(shè)計(jì)語言來看待。它的語法基本上與Matlab一致,嚴(yán)謹(jǐn)編寫的代碼應(yīng)同時(shí)可在Matlab及Octave運(yùn)行。但若調(diào)用了Matlab工具包,則一般不能直接在Octave上運(yùn)行,因?yàn)镺ctave附帶的工具包與Matlab并不兼容。

expand -表達(dá)式展開Expand - 展開表達(dá)式的惰性形式expandoff/expandon - 抑制/不抑制函數(shù)展開5.2 因式分解Afactor - ***因式分解的惰性形式Afactors - ***因式分解分解項(xiàng)列表的惰性形式Berlekamp - 因式分解的Berlekamp 顯式度factor - 多元的多項(xiàng)式的因式分解factors - 多元多項(xiàng)式的因式分解列表Factor - 函數(shù)factor 的惰性形式Factors - 函數(shù)factors 的惰性形式polytools[splits] - 多項(xiàng)式的完全因式分解第6章 化簡(jiǎn)6.1 表達(dá)式化簡(jiǎn)118simplify - 給一個(gè)表達(dá)式實(shí)施化簡(jiǎn)規(guī)則simplify/@ - 利用運(yùn)算符化簡(jiǎn)表達(dá)式simplify/Ei - 利用指數(shù)積分化簡(jiǎn)表達(dá)式這些軟件各有特點(diǎn),選擇合適的工具通常取決于具體的應(yīng)用需求和個(gè)人的使用習(xí)慣。

普陀區(qū)怎樣科學(xué)計(jì)算軟件比較,科學(xué)計(jì)算軟件

第12章級(jí)數(shù)12.1 冪級(jí)數(shù)的階數(shù)Order - 階數(shù)項(xiàng)函數(shù)order - 確定級(jí)數(shù)的截?cái)嚯A數(shù)12.2 常見級(jí)數(shù)展開series - 一般的級(jí)數(shù)展開taylor - Taylor 級(jí)數(shù)展開mtaylor - 多元Taylor級(jí)數(shù)展開poisson - Poisson級(jí)數(shù)展開.26812.3 其它級(jí)數(shù)eulermac - Euler-Maclaurin求和piecewise - 分段連續(xù)函數(shù)asympt - 漸進(jìn)展開第13章 特殊函數(shù)AiryAi, AiryBi - Airy 波動(dòng)函數(shù)AiryAiZeros, AiryBiZeros - Airy函數(shù)的實(shí)數(shù)零點(diǎn)AngerJ, WeberE - Anger函數(shù)和Weber函數(shù)BesselI, HankelH1, … - Bessel函數(shù)和Hankel函數(shù)BesselJZeros, … - Bessel函數(shù)實(shí)數(shù)零點(diǎn)MATLAB:用于數(shù)學(xué)計(jì)算、算法開發(fā)、數(shù)據(jù)分析和可視化,特別在工程和科學(xué)領(lǐng)域中應(yīng)用。上海質(zhì)量科學(xué)計(jì)算軟件價(jià)格

科學(xué)計(jì)算軟件,顧名思義,是指利用計(jì)算機(jī)技術(shù)進(jìn)行科學(xué)研究和工程技術(shù)中所遇到的數(shù)學(xué)計(jì)算問題的軟件。普陀區(qū)怎樣科學(xué)計(jì)算軟件比較

CharacteristicPolynomial 構(gòu)造矩陣的特征多項(xiàng)式CompanionMatrix 構(gòu)造一個(gè)首一(或非首一)多項(xiàng)式或矩陣多項(xiàng)式的友矩陣(束)ConditionNumber 計(jì)算矩陣關(guān)于某范數(shù)的條件數(shù)ConstantMatrix 構(gòu)造常數(shù)矩陣ConstantVector 構(gòu)造常數(shù)向量Copy 構(gòu)造矩陣或向量的一份復(fù)制CreatePermutation 將一個(gè) NAG 主元向量轉(zhuǎn)換為一個(gè)置換向量或矩陣CrossProduct 向量的叉積`&x` 向量的叉積DeleteRow 刪除矩陣的行DeleteColumn刪除矩陣的列Determinant 行列式Diagonal 返回從矩陣中得到的向量序列DiagonalMatrix 構(gòu)造(分塊)對(duì)角矩陣普陀區(qū)怎樣科學(xué)計(jì)算軟件比較

甘茨軟件科技(上海)有限公司是一家有著雄厚實(shí)力背景、信譽(yù)可靠、勵(lì)精圖治、展望未來、有夢(mèng)想有目標(biāo),有組織有體系的公司,堅(jiān)持于帶領(lǐng)員工在未來的道路上大放光明,攜手共畫藍(lán)圖,在上海市等地區(qū)的數(shù)碼、電腦行業(yè)中積累了大批忠誠(chéng)的客戶粉絲源,也收獲了良好的用戶口碑,為公司的發(fā)展奠定的良好的行業(yè)基礎(chǔ),也希望未來公司能成為*****,努力為行業(yè)領(lǐng)域的發(fā)展奉獻(xiàn)出自己的一份力量,我們相信精益求精的工作態(tài)度和不斷的完善創(chuàng)新理念以及自強(qiáng)不息,斗志昂揚(yáng)的的企業(yè)精神將**甘茨軟件供應(yīng)和您一起攜手步入輝煌,共創(chuàng)佳績(jī),一直以來,公司貫徹執(zhí)行科學(xué)管理、創(chuàng)新發(fā)展、誠(chéng)實(shí)守信的方針,員工精誠(chéng)努力,協(xié)同奮取,以品質(zhì)、服務(wù)來贏得市場(chǎng),我們一直在路上!