探索LIMS在綜合第三方平臺(tái)建設(shè)
高校實(shí)驗(yàn)室引入LIMS系統(tǒng)的優(yōu)勢
高校實(shí)驗(yàn)室中LIMS系統(tǒng)的應(yīng)用現(xiàn)狀
LIMS應(yīng)用在生物醫(yī)療領(lǐng)域的重要性
LIMS系統(tǒng)在醫(yī)藥行業(yè)的應(yīng)用
LIMS:實(shí)驗(yàn)室信息管理系統(tǒng)的模塊組成
如何選擇一款適合的LIMS?簡單幾步助你輕松解決
LIMS:解決實(shí)驗(yàn)室管理的痛點(diǎn)
實(shí)驗(yàn)室是否需要采用LIMS軟件?
LIMS系統(tǒng)在化工化學(xué)行業(yè)的發(fā)展趨勢
微物理系統(tǒng)(MPS)又稱OrganonChip(OOC)、器官芯片,旨在表征人體組織的結(jié)構(gòu)和功能特征。與傳統(tǒng)的二維平皿細(xì)胞培養(yǎng)相比,MPS可以利用多種細(xì)胞類型,在三維支架中培養(yǎng),在灌注狀態(tài)下模擬組織中的血流。它們可用于臨床前藥物吸收、分布、代謝和排泄(ADME)研究,以獲得相關(guān)的人體數(shù)據(jù),并有助于告知?jiǎng)┝糠桨负陀行幬餄舛鹊葏?shù)。MPS包含一系列平臺(tái),這些平臺(tái)通過使用微工程技術(shù)(通常與3D微環(huán)境結(jié)合使用)來模仿組織功能的各個(gè)方面。此類系統(tǒng)已報(bào)告為3D球體,類器guan,器官芯片,靜態(tài)微圖案技術(shù)和非物理芯片模型。更多關(guān)于CNBIO器官芯片相關(guān)產(chǎn)品問題,歡迎咨詢上海曼博生物!器官芯片的優(yōu)化和改進(jìn)還需要考慮其對(duì)環(huán)境和資源的影響。腸器官芯片作用原理
鑒于I期試驗(yàn)中只有十分之一的臨床前候選藥物可能會(huì)獲得市場認(rèn)可,因此迫切需要更好的臨床成功預(yù)測指標(biāo)。由于藥代動(dòng)力學(xué)和藥效學(xué)(PK/PD)的物種差異,體外模型過于簡化以及對(duì)基本病生理的了解不足,將體外研究的結(jié)果轉(zhuǎn)化為體內(nèi)情況仍然是一個(gè)挑戰(zhàn)。終止通常歸因于動(dòng)物研究中發(fā)現(xiàn)的安全問題,可以通過更準(zhǔn)確地預(yù)測吸收,分布,代謝和排泄(ADME)譜來很大程度地減少。盡管2D單層細(xì)胞培養(yǎng)實(shí)驗(yàn)和動(dòng)物模型已深深地嵌入到藥物基礎(chǔ)設(shè)施中,但仍然存在明顯的差距,效率低下和不準(zhǔn)確之處,因此需要新的替代和補(bǔ)充研究模型。在生物工程和細(xì)胞生物學(xué)的交叉中,存在著一種新的發(fā)現(xiàn)和開發(fā)藥物的方法,人們正在尋求這種新方法來克服眾所周知的低臨床成功率。微生理系統(tǒng)(MPS),也即器官芯片系統(tǒng)是一類新興的體外模型,有望通過在研發(fā)的關(guān)鍵階段提供可靠的生理相關(guān)數(shù)據(jù)來加快藥物開發(fā)。英國CN Bio的Physiomimix器官芯片正是基于實(shí)現(xiàn)此遠(yuǎn)大目標(biāo)而應(yīng)運(yùn)而生。腸類器官芯片好用么器官芯片的使用需要根據(jù)實(shí)驗(yàn)要求選擇適當(dāng)?shù)臋z測方法和信號(hào)放大方式.
英國CNBio的PhysioMimix器官芯片用于在單和多器g實(shí)驗(yàn)中對(duì)細(xì)胞培養(yǎng)條件進(jìn)行實(shí)時(shí)控制,以模擬體內(nèi)生理學(xué)。利用器官芯片平臺(tái)PhysioMimix,我們生成了NAFLD的人源體外模型。PHH在含脂肪的培養(yǎng)基中培養(yǎng),該培養(yǎng)基誘導(dǎo)了臨床疾病早期階段的關(guān)鍵特征,包括細(xì)胞內(nèi)脂肪負(fù)載,白蛋白產(chǎn)生增加和關(guān)鍵基因表達(dá)的變化(包括那些與代謝和胰島素抵抗有關(guān)的基因)。由于乙型肝炎等肝病發(fā)病率的增加,死亡率的上升預(yù)計(jì)將推動(dòng)對(duì)肝器官芯片微流控模型的需求。此外,用于藥物篩選的肝芯片設(shè)備的需求激增預(yù)計(jì)將推動(dòng)市場增長。
器官芯片應(yīng)用的機(jī)會(huì)在于疾病建模和表型篩選,以幫助識(shí)別和排序新的和已知的(包括孤兒藥和可用于重新用途的失敗化合物)化合物候選物。正在尋求改進(jìn)的模型來解決動(dòng)物模型不能很好滿足的條件(例如,乙型肝炎),并能夠進(jìn)行宿主遺傳研究,藥物治療反應(yīng)的建模以及鑒定可用于監(jiān)測藥物治療的生物標(biāo)記物。英國CNBio正在其基于MIT的器官芯片技術(shù)產(chǎn)品Physiomimix系統(tǒng)上開發(fā)先進(jìn)的體外模型,以支持對(duì)高度流行的疾病的研究,這些疾病已對(duì)公共健康產(chǎn)生了公認(rèn)的影響,例如非酒精性脂肪性肝炎(NASH)。人類NASH的微組織模型可以證明疾病的主要標(biāo)志,提供了在細(xì)胞水平上闡明病理生理機(jī)制的機(jī)會(huì).器官芯片的應(yīng)用還需要遵循偷規(guī)范和實(shí)驗(yàn)原則,如知情同意\保護(hù)個(gè)人隱私等。
器官芯片技術(shù)也叫做微生理系統(tǒng),是一種細(xì)胞培養(yǎng)與微流控技術(shù)的結(jié)合,能夠精確控制細(xì)胞培養(yǎng)所需的環(huán)境,如流體剪切力、分子濃度梯度及多器guan相互作用等,能夠在體外真實(shí)模擬人體組織的復(fù)雜結(jié)構(gòu)、組織微環(huán)境以及各項(xiàng)生理功能。器官芯片模型的可用性為理解人類疾病的發(fā)病機(jī)制提供了大量機(jī)會(huì),并為篩選藥物提供了潛在的更好模型,因?yàn)檫@些模型利用了類似于人體的動(dòng)態(tài)3D環(huán)境。盡管器官芯片模型存在局限性,但新技術(shù)的出現(xiàn)提高了其轉(zhuǎn)化研究和精確醫(yī)學(xué)的能力。英國CNBio的Physiomimix器官芯片正是基于實(shí)現(xiàn)此遠(yuǎn)大目標(biāo)而應(yīng)運(yùn)而生。器官芯片的使用還需考慮其對(duì)樣品的數(shù)量和類型的限制.腸器官芯片作用原理
哪個(gè)品牌的器官芯片比較好?腸器官芯片作用原理
技術(shù)的開發(fā)必須考慮到用戶,并且其設(shè)計(jì)應(yīng)極大限度地提高可用性和可重復(fù)性。提供與自動(dòng)化兼容的高通量功能可以激勵(lì)研究人員,使他們受益于效率的提高和人工成本的降低。在某些情況下,器官芯片還可以減少動(dòng)物試驗(yàn),細(xì)胞和試劑的成本,因?yàn)樵S多微流控設(shè)備需要更小的體積。為了延長MPS模型的壽命,巨大的努力已經(jīng)導(dǎo)向?yàn)殚L期實(shí)驗(yàn)提供更大的窗口,可以進(jìn)行復(fù)合劑量和疾病進(jìn)展的觀察,腸道屏障功能的體外模型和肝病模型已經(jīng)可以維持?jǐn)?shù)周。英國CNBio的Physiomimix器官芯片正是基于實(shí)現(xiàn)此遠(yuǎn)大目標(biāo)而應(yīng)運(yùn)而生。更多關(guān)于CNBIO器官芯片相關(guān)產(chǎn)品問題,歡迎咨詢上海曼博生物!腸器官芯片作用原理