隨著科技發(fā)展, 各類工程設(shè)備的工作和運行環(huán)境變得越來越復(fù)雜. 作為機械設(shè)備的關(guān)鍵零部件, 滾動軸承在長期大載荷、強沖擊等復(fù)雜工況下, 極易產(chǎn)生各種故障, 導(dǎo)致機械工作狀況惡化. 針對軸承的故障預(yù)測與健康管理技術(shù)應(yīng)運而生. 若能在故障發(fā)生初期即進行準確、可靠的檢測和診斷, 則有助于進行及時維修, 避免嚴重事故的發(fā)生. 早期故障檢測已成為PHM的關(guān)鍵技術(shù)環(huán)節(jié)之一. 近年來, 隨著傳感技術(shù)和機器學習技術(shù)的快速發(fā)展, 數(shù)據(jù)驅(qū)動的智能化故障檢測和診斷技術(shù)受到關(guān)注. 如何利用歷史采集的狀態(tài)監(jiān)控數(shù)據(jù)、提高目標軸承早期故障檢測結(jié)果的準確性和穩(wěn)定性成為研究熱點和難點, 具有明確的學術(shù)價值和應(yīng)用需求.本文關(guān)注的是不停機情況下的早期故障在線檢測問題. 這種方式有助于實時評估軸承工作狀態(tài), 避免因等待停機檢查而產(chǎn)生延誤、造成經(jīng)濟損失, 因此對早期故障的在線檢測越來越受到工業(yè)界的重視。工業(yè)產(chǎn)品質(zhì)量的監(jiān)測檢測是保證產(chǎn)品符合標準要求的重要手段,可以提高產(chǎn)品的競爭力和市場信譽。杭州研發(fā)監(jiān)測臺
作為工業(yè)領(lǐng)域的一種關(guān)鍵旋轉(zhuǎn)設(shè)備,對于終端用來說,關(guān)于電機維護的主要是電氣班組的設(shè)備工程師、電機維護工程師、電機檢修人員等;對于電機廠家以及電機經(jīng)銷商來說,主要是電機售后服務(wù)工程師、電機銷售人員,會涉及到電機的運行維護;險此之外,還有第三方檢修人員等。目前已經(jīng)有很多智能產(chǎn)品號稱可以實現(xiàn)電機的預(yù)測性維護,但問題也非常多。1)傳感器安裝難。設(shè)備狀態(tài)監(jiān)測需要振動、噪聲、溫度傳感器,通訊協(xié)議并不統(tǒng)一,自成體系,安裝、使用、維護成本高昂。2)技術(shù)成本高。工業(yè)場景設(shè)備類型多,運行工況復(fù)雜,預(yù)測性維護算法涉及數(shù)據(jù)預(yù)處理、工業(yè)機理、機器學習,技術(shù)要求很高。3)時間成本高。預(yù)測性維護要實現(xiàn),前期需要大量歷史數(shù)據(jù)的支撐,數(shù)據(jù)采集、歸納、分析是一個漫長的過程。電機智能運維,雖然被各大宣傳媒體提得很多,但還遠遠未到落地很好乃至普及的程度,不論是預(yù)測性維護的預(yù)測效果,還是電機的智能運維的市場推廣以及市場接受程度,對于電機運維來說,都還有很遠的一段距離!杭州動力設(shè)備監(jiān)測應(yīng)用監(jiān)測結(jié)果的反饋可以幫助我們改進產(chǎn)品的包裝和宣傳策略。
隨著電力電子技術(shù)、自動化控制技術(shù)的不斷發(fā)展,電機在工業(yè)生產(chǎn)以及家用電器中得到了的應(yīng)用,在市場競爭中正逐步顯示自己的優(yōu)勢。傳統(tǒng)的電機在線監(jiān)測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數(shù)的方式進行數(shù)據(jù)的測量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數(shù)誤差大,測試結(jié)果不準確。有些場合需要進行電機多種參數(shù)的監(jiān)測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測方法要求監(jiān)測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測方法無法做定量分析,無法更加準確、實時的掌握電機的運行狀態(tài)和故障。技術(shù)實現(xiàn)要素:本發(fā)明提出了一種電機在線監(jiān)測裝置和方法,通過對扭矩、轉(zhuǎn)速、各相電流、溫度、輸入、輸出功率和效率進行實時動態(tài)的監(jiān)測以及對過電壓、過電流、過熱進行報警停機,解決現(xiàn)有技術(shù)中監(jiān)測參數(shù)不能定量分析以及無法更加準確、實時的掌握電機運行狀態(tài)和故障的技術(shù)問題。
非標監(jiān)測是指對非標準化設(shè)備或系統(tǒng)進行監(jiān)測的過程。與標準設(shè)備相比,非標設(shè)備通常具有獨特的設(shè)計和功能,因此需要專門的監(jiān)測方法和工具。非標監(jiān)測的目的是確保非標設(shè)備的正常運行和安全性。通過監(jiān)測關(guān)鍵參數(shù)和性能指標,可以及時發(fā)現(xiàn)潛在問題并采取相應(yīng)的措施進行修復(fù)或調(diào)整。非標監(jiān)測的步驟包括確定監(jiān)測目標、選擇監(jiān)測方法和工具、制定監(jiān)測計劃、實施監(jiān)測、分析數(shù)據(jù)和結(jié)果,并根據(jù)需要進行維護和改進。在非標監(jiān)測中,需要根據(jù)具體情況選擇合適的監(jiān)測方法和工具。這可能涉及到使用傳感器、儀器和軟件等技術(shù)手段來收集和分析數(shù)據(jù)。非標監(jiān)測的重要性在于提高設(shè)備的穩(wěn)定性和可靠性,減少故障和停機時間,提高生產(chǎn)效率和質(zhì)量。同時,它還可以降低維修和更換成本,延長設(shè)備的使用壽命。總之,非標監(jiān)測是確保非標設(shè)備正常運行和安全性的重要手段,對于提高生產(chǎn)效率和質(zhì)量具有重要意義。監(jiān)測結(jié)果的比較可以幫助我們評估不同地區(qū)的市場需求和潛力。
傳統(tǒng)方法通常無法自適應(yīng)提取特征, 同時需要一定的離線數(shù)據(jù)訓(xùn)練得到檢測模型, 但目標對象在線場景下采集到的數(shù)據(jù)有限, 且其數(shù)據(jù)分布與訓(xùn)練數(shù)據(jù)的分布可能因隨機噪聲、變工況等原因而存在差異, 導(dǎo)致離線訓(xùn)練的模型并不完全適合于在線數(shù)據(jù), 容易降低檢測結(jié)果的準確性; 其次, 上述方法通常采用基于異常點的檢測算法, 未充分考慮樣本前后的時序關(guān)系, 容易因數(shù)據(jù)微小波動而產(chǎn)生誤報警, 降低檢測結(jié)果的魯棒性; 再次, 為降低誤報警, 這類方法需要反復(fù)調(diào)整報警閾值. 此外, 基于系統(tǒng)分析的故障診斷方法利用狀態(tài)空間描述建立機理模型, 可獲得理想的診斷和檢測結(jié)果, 但這類方法通常需要提前知道系統(tǒng)運動方程等信息, 對于軸承運行來說, 這類信息通常不易獲知.
近年來, 深度神經(jīng)網(wǎng)絡(luò)已被成功應(yīng)用于早期故障特征的自動提取和識別, 可自適應(yīng)地提取信息豐富和判別能力強的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量的輔助數(shù)據(jù)進行模型訓(xùn)練, 而歷史采集的輔助數(shù)據(jù)與目標對象數(shù)據(jù)可能存在較大不同, 直接訓(xùn)練并不能有效提升在線檢測的特征表示效果; 另一方面, 在訓(xùn)練過程中未能針對早期故障引發(fā)的狀態(tài)變化而有目的地強化相應(yīng)特征表示. 因此, 深度學習方法在早期故障在線監(jiān)測中的應(yīng)用仍存在較大的提升空間. 監(jiān)測結(jié)果的比較可以幫助我們評估不同銷售渠道的效果和效益。杭州性能監(jiān)測
監(jiān)測結(jié)果的分析可以幫助我們預(yù)測未來的發(fā)展趨勢。杭州研發(fā)監(jiān)測臺
在工業(yè)現(xiàn)場的預(yù)防性維護應(yīng)用中,振動是大型旋轉(zhuǎn)等設(shè)備即將發(fā)生故障的重要指標,一是在大型旋轉(zhuǎn)機械設(shè)備的所有故障中,振動問題出現(xiàn)的概率比較高;另一方面,振動信號包含了豐富的機械及運行的狀態(tài)信息;第三,振動信號易于拾取,便于在不影響機械運行的情況下實行在線監(jiān)測和診斷。旋轉(zhuǎn)類設(shè)備的預(yù)防性維護需要重點監(jiān)控振動量的變化。其預(yù)測性診斷技術(shù)對于制造業(yè)、風電等的行業(yè)的運維具有非常重大的意義。通過設(shè)備振動等狀態(tài)的預(yù)測性維護,可以及時發(fā)現(xiàn)并解決系統(tǒng)及零部件存在問題。但是對于一些不是因為設(shè)備問題而存在的固有振動,振動強度的不必要增加會對部件產(chǎn)生有害的力,危及設(shè)備的使用壽命和質(zhì)量。在這種情況下,則需要采用振動隔離技術(shù)來解決和干預(yù),有效抑制振動和噪聲的危害,避免設(shè)備故障和流程關(guān)閉。杭州研發(fā)監(jiān)測臺