上海瑞鑫生產(chǎn)供應(yīng)24通道農(nóng)藥殘留速測儀
上海瑞鑫供應(yīng)食品安全檢測儀
上海瑞鑫供應(yīng)8通道農(nóng)藥殘留速測儀
上海瑞鑫生產(chǎn)供應(yīng)JT-102M糧食安全檢測儀
上海瑞鑫對SP-801B多功能食品分析儀進(jìn)行技術(shù)升級
上海瑞鑫供應(yīng)12通道農(nóng)藥殘留速測儀
上海瑞鑫生產(chǎn)供應(yīng)農(nóng)藥殘留檢測試劑
上海瑞鑫推出SP-801D多功能食品安全儀
上海瑞鑫推出JT-102M糧食安全檢測儀
上海瑞鑫生產(chǎn)供應(yīng)12通道農(nóng)藥殘留速測儀
電機(jī)作為工業(yè)世界的支柱,在發(fā)電、制造和運(yùn)輸業(yè)等各機(jī)械領(lǐng)域發(fā)揮著至關(guān)重要的作用。電機(jī)*常見的應(yīng)用場景如:泵、壓縮機(jī)、鼓風(fēng)機(jī)、風(fēng)扇、機(jī)床、起重機(jī)、輸送機(jī)和電動汽車等。全球產(chǎn)生的總電能的50%以上用于電機(jī),感應(yīng)電機(jī)消耗了約60%的工業(yè)電力。由于低成本、堅(jiān)固耐用、功率重量比高以及對各種操作條件的適應(yīng)性,感應(yīng)電機(jī)在所有行業(yè)的部署中的應(yīng)用范圍都穩(wěn)步提升。感應(yīng)電機(jī)的可靠性至關(guān)重要,以確保該后續(xù)流程工業(yè)的健康持續(xù)運(yùn)行。然而,感應(yīng)電機(jī)面臨的不可避免的熱應(yīng)力、環(huán)境變化、機(jī)械應(yīng)力、外部負(fù)載變化、電流偏差、潤滑不足和密封不良、多塵環(huán)境、制造缺陷和自然老化等因素。使得其不可避免的產(chǎn)生一些意外故障。這些故障若在其初級階段被忽視,極易導(dǎo)致災(zāi)難性的電機(jī)故障和次生災(zāi)害,如流程關(guān)閉及嚴(yán)重的人員傷亡,這就帶來巨大的經(jīng)濟(jì)損失和負(fù)面社會效應(yīng)。為了避免發(fā)生災(zāi)難性電機(jī)故障的可能性,業(yè)界產(chǎn)生對開始退化的感應(yīng)電機(jī)組件進(jìn)行了早期狀態(tài)監(jiān)測和故障診斷的需求。狀態(tài)監(jiān)測可在其整個使用壽命期間對感應(yīng)電機(jī)的各種部件進(jìn)行持續(xù)評估。感應(yīng)電機(jī)故障的早期診斷,對即將發(fā)生的故障提供足夠的警告,為企業(yè)提供基于狀態(tài)的維護(hù)和*短停機(jī)時間建議。通俗地說。監(jiān)測工作需要關(guān)注市場的價(jià)格變化和競爭態(tài)勢,以制定相應(yīng)的定價(jià)策略。南通研發(fā)監(jiān)測特點(diǎn)
作為工業(yè)領(lǐng)域的一種關(guān)鍵旋轉(zhuǎn)設(shè)備,對于終端用來說,關(guān)于電機(jī)維護(hù)的主要是電氣班組的設(shè)備工程師、電機(jī)維護(hù)工程師、電機(jī)檢修人員等;對于電機(jī)廠家以及電機(jī)經(jīng)銷商來說,主要是電機(jī)售后服務(wù)工程師、電機(jī)銷售人員,會涉及到電機(jī)的運(yùn)行維護(hù);險(xiǎn)此之外,還有第三方檢修人員等。目前已經(jīng)有很多智能產(chǎn)品號稱可以實(shí)現(xiàn)電機(jī)預(yù)測性維護(hù),但問題也非常多。1)傳感器安裝難。設(shè)備狀態(tài)監(jiān)測需要振動、噪聲、溫度傳感器,通訊協(xié)議并不統(tǒng)一,自成體系,安裝、使用、維護(hù)成本高昂。2)技術(shù)成本高。工業(yè)場景設(shè)備類型多,運(yùn)行工況復(fù)雜,預(yù)測性維護(hù)算法涉及數(shù)據(jù)預(yù)處理、工業(yè)機(jī)理、機(jī)器學(xué)習(xí),技術(shù)要求很高。3)時間成本高。預(yù)測性維護(hù)要實(shí)現(xiàn),前期需要大量歷史數(shù)據(jù)的支撐,數(shù)據(jù)采集、歸納、分析是一個漫長的過程。的電機(jī)智能運(yùn)維,雖然被各大宣傳媒體提得很多,但還遠(yuǎn)遠(yuǎn)未到落地很好乃至普及的程度,不論是預(yù)測性維護(hù)的預(yù)測效果,還是電機(jī)的智能運(yùn)維的市場推廣以及市場接受程度,對于電機(jī)運(yùn)維來說,都還有很遠(yuǎn)的一段距離! 紹興EOL監(jiān)測公司監(jiān)測工作需要關(guān)注政策和法規(guī)的變化,以及時調(diào)整經(jīng)營策略。
針對刀具磨損狀態(tài)在實(shí)際生產(chǎn)加工過程中難以在線監(jiān)測這一問題,提出一種通過通信技術(shù)獲取機(jī)床內(nèi)部數(shù)據(jù),對當(dāng)前的刀具磨損狀態(tài)進(jìn)行識別的方法。通過采集機(jī)床內(nèi)部實(shí)時數(shù)據(jù)并將其與實(shí)際加工情景緊密結(jié)合,能直接反映當(dāng)前的加工狀態(tài)。將卷積神經(jīng)網(wǎng)絡(luò)用于構(gòu)建刀具磨損狀態(tài)識別模型,直接將采集到的數(shù)據(jù)作為輸入,得到了和傳統(tǒng)方法精度近似的預(yù)測模型,模型在訓(xùn)練集和在線驗(yàn)證試驗(yàn)中的表現(xiàn)都符合預(yù)期。刀具磨損狀態(tài)識別的方法在投入使用時還有一些問題有待解決:①現(xiàn)有數(shù)據(jù)是在相同的加工條件下測得的,而實(shí)際加工過程中,加工參數(shù)以及加工情景是不斷變化的,因此需要在下一步的研究中,進(jìn)行變參數(shù)試驗(yàn),考慮加工參數(shù)對于刀具磨損的影響,并針對常用的一些加工場景,建立不同的模型庫。變換加工場景,通過獲取當(dāng)前場景,及時匹配相應(yīng)的預(yù)測模型即可。②本研究中的模型是一個固定的模型。今后需要根據(jù)實(shí)時的信號以及已知的磨損狀態(tài),對模型進(jìn)行實(shí)時更新,從而在實(shí)時監(jiān)測過程中實(shí)現(xiàn)自學(xué)習(xí),不斷提升模型的精度和預(yù)測效果。
傳統(tǒng)方法通常無法自適應(yīng)提取特征, 同時需要一定的離線數(shù)據(jù)訓(xùn)練得到檢測模型, 但目標(biāo)對象在線場景下采集到的數(shù)據(jù)有限, 且其數(shù)據(jù)分布與訓(xùn)練數(shù)據(jù)的分布可能因隨機(jī)噪聲、變工況等原因而存在差異, 導(dǎo)致離線訓(xùn)練的模型并不完全適合于在線數(shù)據(jù), 容易降低檢測結(jié)果的準(zhǔn)確性; 其次, 上述方法通常采用基于異常點(diǎn)的檢測算法, 未充分考慮樣本前后的時序關(guān)系, 容易因數(shù)據(jù)微小波動而產(chǎn)生誤報(bào)警, 降低檢測結(jié)果的魯棒性; 再次, 為降低誤報(bào)警, 這類方法需要反復(fù)調(diào)整報(bào)警閾值. 此外, 基于系統(tǒng)分析的故障診斷方法利用狀態(tài)空間描述建立機(jī)理模型, 可獲得理想的診斷和檢測結(jié)果, 但這類方法通常需要提前知道系統(tǒng)運(yùn)動方程等信息, 對于軸承運(yùn)行來說, 這類信息通常不易獲知.
近年來, 深度神經(jīng)網(wǎng)絡(luò)已被成功應(yīng)用于早期故障特征的自動提取和識別, 可自適應(yīng)地提取信息豐富和判別能力強(qiáng)的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量的輔助數(shù)據(jù)進(jìn)行模型訓(xùn)練, 而歷史采集的輔助數(shù)據(jù)與目標(biāo)對象數(shù)據(jù)可能存在較大不同, 直接訓(xùn)練并不能有效提升在線檢測的特征表示效果; 另一方面, 在訓(xùn)練過程中未能針對早期故障引發(fā)的狀態(tài)變化而有目的地強(qiáng)化相應(yīng)特征表示. 因此, 深度學(xué)習(xí)方法在早期故障在線監(jiān)測中的應(yīng)用仍存在較大的提升空間. 監(jiān)測結(jié)果的比較可以幫助我們評估不同銷售渠道的效果和效益。
隨著電力電子技術(shù)、自動化控制技術(shù)的不斷發(fā)展,電機(jī)在工業(yè)生產(chǎn)以及家用電器中得到了的應(yīng)用,在市場競爭中正逐步顯示自己的優(yōu)勢。傳統(tǒng)的電機(jī)在線監(jiān)測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進(jìn)行測量,采用人工讀數(shù)的方式進(jìn)行數(shù)據(jù)的測量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數(shù)誤差大,測試結(jié)果不準(zhǔn)確。有些場合需要進(jìn)行電機(jī)多種參數(shù)的監(jiān)測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測方法要求監(jiān)測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測方法無法做定量分析,無法更加準(zhǔn)確、實(shí)時的掌握電機(jī)的運(yùn)行狀態(tài)和故障。技術(shù)實(shí)現(xiàn)要素:本發(fā)明提出了一種電機(jī)在線監(jiān)測裝置和方法,通過對扭矩、轉(zhuǎn)速、各相電壓、溫度、輸入、輸出功率和效率進(jìn)行實(shí)時動態(tài)的監(jiān)測以及對過電壓、過電流、過熱進(jìn)行報(bào)警停機(jī),解決現(xiàn)有技術(shù)中監(jiān)測參數(shù)不能定量分析以及無法更加準(zhǔn)確、實(shí)時的掌握電機(jī)運(yùn)行狀態(tài)和故障的技術(shù)問題。工業(yè)生產(chǎn)過程中的溫度、濕度等參數(shù)需要進(jìn)行監(jiān)測檢測,以確保生產(chǎn)的穩(wěn)定性和效率。杭州NVH監(jiān)測應(yīng)用
電機(jī)監(jiān)測系統(tǒng)可以預(yù)判電機(jī)故障,發(fā)現(xiàn)潛在風(fēng)險(xiǎn),防止代價(jià)高昂的停機(jī)并提高設(shè)備性能。南通研發(fā)監(jiān)測特點(diǎn)
基于交流電機(jī)的特征量:通過故障機(jī)理分析可知,交流電機(jī)運(yùn)行過程中,其故障與否必然表現(xiàn)為一些特征參量的變化,根據(jù)診斷需要,選擇有代表性的特征參量為該設(shè)備在線監(jiān)測的被測信號,準(zhǔn)確地提取這些故障特征量,這是故障診斷的關(guān)鍵。故障特征量,特別是反映早期故障征兆的信號往往比較弱,而相應(yīng)的背景噪聲比較弱,常規(guī)的監(jiān)測方法,因受傳感器的準(zhǔn)確性、微處理器的速度、A/D轉(zhuǎn)換的分辨率與轉(zhuǎn)換速度等硬件條件的限制,以及一般的數(shù)據(jù)處理方式的不足,很難滿足提取這些特征量的要求,需要采用一些特殊的電工測量手段與信號處理方法。例如小波變換原理的應(yīng)用。電機(jī)故障的現(xiàn)代分析方法:基于信號變換的診斷方法電機(jī)設(shè)備的許多故障信息是以調(diào)制的形式存在于所監(jiān)測的電氣信號及振動信號之中,如果借助于某種變換對這些信號進(jìn)行解調(diào)處理,就能方便地獲得故障特征信息,以確定電機(jī)設(shè)備所發(fā)生的故障類型。常用的信號變換方法有希爾伯特變換和小波變換等。南通研發(fā)監(jiān)測特點(diǎn)