隨著電力電子技術(shù)、自動化控制技術(shù)的不斷發(fā)展,電機在工業(yè)生產(chǎn)以及家用電器中得到了的應(yīng)用,在市場競爭中正逐步顯示自己的優(yōu)勢。傳統(tǒng)的電機在線監(jiān)測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數(shù)的方式進行數(shù)據(jù)的測量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數(shù)誤差大,測試結(jié)果不準確。有些場合需要進行電機多種參數(shù)的監(jiān)測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測方法要求監(jiān)測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測方法無法做定量分析,無法更加準確、實時的掌握電機的運行狀態(tài)和故障。技術(shù)實現(xiàn)要素:本發(fā)明提出了一種電機在線監(jiān)測裝置和方法,通過對扭矩、轉(zhuǎn)速、各相電壓、溫度、輸入、輸出功率和效率進行實時動態(tài)的監(jiān)測以及對過電壓、過電流、過熱進行報警停機,解決現(xiàn)有技術(shù)中監(jiān)測參數(shù)不能定量分析以及無法更加準確、實時的掌握電機運行狀態(tài)和故障的技術(shù)問題。智能電機監(jiān)測系統(tǒng)選擇傳感器采集旋轉(zhuǎn)設(shè)備的溫度、振動數(shù)據(jù),分析變化趨勢以判斷設(shè)備情況。無錫降噪監(jiān)測技術(shù)
故障預(yù)測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎(chǔ),通過數(shù)學優(yōu)化、統(tǒng)計概率、信號處理、機器學習和統(tǒng)計學習等技術(shù)搭建模型算法,實現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預(yù)測,為產(chǎn)品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。故障預(yù)測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎(chǔ),通過高等數(shù)學、數(shù)學優(yōu)化、統(tǒng)計概率、信號處理、機器學習和統(tǒng)計學習等技術(shù)搭建模型算法,實現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預(yù)測,為產(chǎn)品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。近年來我們提出的標準化平方包絡(luò)和數(shù)學框架以及準算數(shù)均值比數(shù)學框架指引了稀疏測度構(gòu)造的新方向,同時發(fā)現(xiàn)了大量與基尼指數(shù)、峭度、香農(nóng)熵等具有等價性能的稀疏測度?;跇藴驶椒桨j(luò)和數(shù)學框架以及凸優(yōu)化技術(shù),提出了在線更新模型權(quán)重可解釋的機器學習算法,可以利用模型權(quán)重來實時確認故障特征頻率,解決了狀態(tài)監(jiān)測與故障診斷領(lǐng)域傳統(tǒng)機器學習只能輸出狀態(tài),而無法提供故障特征來確認輸出狀態(tài)的難題。上海研發(fā)監(jiān)測控制策略電機監(jiān)測和故障預(yù)判系統(tǒng)是實現(xiàn)工業(yè)設(shè)備數(shù)智化管理和預(yù)測性維護的關(guān)鍵。
基于人工神經(jīng)網(wǎng)絡(luò)的診斷方法,簡單處理單元連接而成的復(fù)雜的非線性系統(tǒng),具有學習能力,自適應(yīng)能力,非線性逼近能力等。故障診斷的任務(wù)從映射角度看就是從征兆到故障類型的映射。用ANN技術(shù)處理故障診斷問題,不僅能進行復(fù)雜故障診斷模式的識別,還能進行故障嚴重性評估和故障預(yù)測,由于ANN能自動獲取診斷知識,使診斷系統(tǒng)具有自適應(yīng)能力?;诩尚椭悄芟到y(tǒng)的診斷方法隨著電機設(shè)備系統(tǒng)越來越復(fù)雜,依靠單一的故障診斷技術(shù)已難滿足復(fù)雜電機設(shè)備的故障診斷要求,因此上述各種診斷技術(shù)集成起來形成的集成智能診斷系統(tǒng)成為當前電機設(shè)備故障診斷研究的熱點。主要的集成技術(shù)有:基于規(guī)則的系統(tǒng)與ANN的結(jié)合,模糊邏輯與ANN的結(jié)合,混沌理論與ANN的結(jié)合,模糊神經(jīng)網(wǎng)絡(luò)與系統(tǒng)的結(jié)合。
故障預(yù)測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎(chǔ),通過高等數(shù)學、數(shù)學優(yōu)化、統(tǒng)計概率、信號處理、機器學習和統(tǒng)計學習等技術(shù)搭建模型算法,**終實現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預(yù)測,為產(chǎn)品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。故障預(yù)測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎(chǔ),通過高等數(shù)學、數(shù)學優(yōu)化、統(tǒng)計概率、信號處理、機器學習和統(tǒng)計學習等技術(shù)搭建模型算法,實現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預(yù)測,為產(chǎn)品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。近年來我們提出的標準化平方包絡(luò)和數(shù)學框架以及準算數(shù)均值比數(shù)學框架指引了稀疏測度構(gòu)造的新方向,同時發(fā)現(xiàn)了大量與基尼指數(shù)、峭度等具有等價性能的稀疏測度?;跇藴驶椒桨j(luò)和數(shù)學框架以及凸優(yōu)化技術(shù),提出了在線更新模型權(quán)重可解釋的機器學習算法,
可以利用模型權(quán)重來實時確認故障特征頻率,解決了狀態(tài)監(jiān)測與故障診斷領(lǐng)域傳統(tǒng)機器學習只能輸出狀態(tài),而無法提供故障特征來確認輸出狀態(tài)的難題。 自動駕駛市場在近年來得到了快速發(fā)展。
電機狀態(tài)監(jiān)測故障診斷技術(shù)是一種了解和掌握電機在使用過程中的狀態(tài),確定其整體或局部正常或異常,早期發(fā)現(xiàn)故障及其原因,并能預(yù)報故障發(fā)展趨勢的技術(shù),電機狀態(tài)監(jiān)測與故障診斷技術(shù)包括識別電機狀態(tài)監(jiān)測和預(yù)測發(fā)展趨勢兩方面。設(shè)備狀態(tài)是指設(shè)備運行的工況,由設(shè)備運行過程中的各種性能參數(shù)以及設(shè)備運行過程中產(chǎn)生的二次效應(yīng)參數(shù)和產(chǎn)品質(zhì)量指標參數(shù)來描述。設(shè)備狀態(tài)的類型包括:正常、異常和故障三種。設(shè)備狀態(tài)監(jiān)測是通過測定以上參數(shù),并進行分析處理,根據(jù)分析處理結(jié)果判定設(shè)備狀態(tài)。對設(shè)備進行定期或連續(xù)監(jiān)測,包括采用各種測試、分析判別方法,結(jié)合設(shè)備的歷史狀況和運行條件,弄清設(shè)備的客觀狀態(tài),獲取設(shè)備性能發(fā)展的趨勢規(guī)律,為設(shè)備的性能評價、合理使用、安全運行、故障診斷及設(shè)備自動控制打下基礎(chǔ)。上海盈蓓德科技順應(yīng)行業(yè)發(fā)展趨勢,設(shè)計開發(fā)了一套旋轉(zhuǎn)類設(shè)備溫度,振動狀態(tài)監(jiān)測、故障判斷系統(tǒng)。上海設(shè)備監(jiān)測數(shù)據(jù)
盈蓓德科技提供一種滿足大型電機設(shè)備監(jiān)測要求,實現(xiàn)振動數(shù)據(jù)采集及分析,造價較低的振動監(jiān)測系統(tǒng)。無錫降噪監(jiān)測技術(shù)
工業(yè)設(shè)備的預(yù)測性維護的市場需求顯而易見,但是預(yù)防性維護想要產(chǎn)生業(yè)務(wù)、真正大規(guī)模發(fā)展卻是遇到了兩個難題。首先項目實施成本過高,硬件設(shè)備大多依賴進口。比如數(shù)采傳感器、設(shè)備等。這導(dǎo)致很多企業(yè)在考慮投入產(chǎn)出比時比較猶豫。其次是技術(shù)需要突破,目前大多數(shù)供應(yīng)商只實現(xiàn)了設(shè)備狀態(tài)的監(jiān)視,真正能實現(xiàn)故障準確預(yù)測的落地案例寥寥無幾。供應(yīng)商技術(shù)和能力還需要不斷升級。預(yù)防性維護要想實現(xiàn)更好的應(yīng)用,要在以下方面實現(xiàn)突破。實現(xiàn)基于預(yù)測的維護,提升故障診斷及預(yù)測的準確率提高軟硬件產(chǎn)品國產(chǎn)化率,降低實施成本。遠程終端廣泛應(yīng)用于工業(yè)互聯(lián)網(wǎng)、分布式數(shù)據(jù)采集、設(shè)備狀態(tài)的在線監(jiān)測,能夠進行前端數(shù)據(jù)清洗和邊緣計算,通過對歷史數(shù)據(jù)趨勢分析、設(shè)備數(shù)據(jù)機理分析、統(tǒng)計分析等大數(shù)據(jù)分析,對設(shè)備的狀態(tài)做出有效可靠的健康狀態(tài)評判,從而切實有效的提高設(shè)備的維護能力。遠程終端可實現(xiàn)對電源電壓、設(shè)備狀態(tài)的自檢,分析計量故障等信息,及時發(fā)現(xiàn)計量異?!,F(xiàn)場監(jiān)測箱開門、斷電、設(shè)備運行等異常信息也能夠主動發(fā)送報警信息到監(jiān)測中心,實現(xiàn)設(shè)備在線監(jiān)診的準確性、完整性、及時性和可靠性。設(shè)備狀態(tài)的監(jiān)診很有必要。無錫降噪監(jiān)測技術(shù)