Nanoscribe在2021年6月30日推出了頭一個用于熔融石英玻璃微結(jié)構(gòu)的3D微加工商用高精度增材制造工藝和材料——GlassPrintingExplorerSet。新型光樹脂GP-Silica是GlassPrintingExplorerSet的中心,與Glassomer聯(lián)合研究開發(fā)。據(jù)說這是目前只有一種用于熔融石英玻璃微細(xì)加工的光樹脂,因為高光學(xué)透明度以及出色的熱、機械和化學(xué)性能脫穎而出,為探索生命科學(xué)、微流體、微光學(xué)、材料工程和其他微技術(shù)領(lǐng)域的新應(yīng)用開辟了機會。GlassPrintingExplorerSet能夠高精度3D打印,并且具有耐高溫性、機械和化學(xué)穩(wěn)定性以及光學(xué)透明度。熔融石英玻璃的雙光子聚合(2PP)技術(shù)展現(xiàn)了玻璃產(chǎn)品的出色性能,推動了對生命科學(xué)、微流體、微光學(xué)和其他領(lǐng)域的探索。瑞士弗里堡工程與建筑學(xué)院助理教授兼圖形打印系主任NicolasMuller稱,GP-Silica研究制造復(fù)雜微流體系統(tǒng)方面具有巨大潛力,盡管所需的熱后處理要求很高。如需了解增材制造的信息,請咨詢咨詢Nanoscribe在中國的子公司納糯三維科技(上海)有限公司。重慶MEMS增材制造微納加工系統(tǒng)
近幾年來,增材制造在全球范圍內(nèi)迅速走熱,各國對于增材制造技術(shù)又開始重新重視起來,美國總統(tǒng)奧巴馬將其視作制造業(yè)回歸升級的重要方向,中國也在金屬增材制造領(lǐng)域一直處于排名在前的水平。隨著技術(shù)不斷的進步,增材制造已經(jīng)在航空航天、模具以及汽車等領(lǐng)域獲得大規(guī)模應(yīng)用,而走在應(yīng)用前列的當(dāng)屬美國NASA。據(jù)美國國家航空航天局(NASA)官網(wǎng)近日報道,NASA工程人員正通過利用增材制造技術(shù)制造頭一個全尺寸銅合金火箭發(fā)動機零件以節(jié)約成本,NASA空間技術(shù)任務(wù)部負(fù)責(zé)人表示,這是航空航天領(lǐng)域3D打印技術(shù)應(yīng)用的新里程碑。增材制造(AM)技術(shù)又稱為快速原型、快速成形、快速制造、3D打印技術(shù)等,是指基于離散-堆積原理,由零件三維數(shù)據(jù)驅(qū)動直接制造零件的科學(xué)技術(shù)體系?;诓煌姆诸愒瓌t和理解方式,增材制造技術(shù)的內(nèi)涵仍在不斷深化,外延也不斷擴展。增材制造技術(shù)不需要傳統(tǒng)的刀具和夾具以及復(fù)雜的加工工序,在一臺設(shè)備上可快速精密地制造出任意復(fù)雜形狀的零件,從而實現(xiàn)了零件“自由制造”,解決了許多復(fù)雜結(jié)構(gòu)零件的成形,并很大程度減少了加工工序,縮短了加工周期,而且產(chǎn)品結(jié)構(gòu)越復(fù)雜。天津工業(yè)級增材制造無掩膜光刻增材制造輪在性能方面也表現(xiàn)出色。
借助Nanoscribe的3D微納加工技術(shù),您可以實現(xiàn)亞細(xì)胞結(jié)構(gòu)的三維成像,適用于細(xì)胞研究和芯片實驗室應(yīng)用(lab-on-a-chip)。我們的客戶成功使用Nanoscribe雙光子無掩模光刻系統(tǒng)制作了3D細(xì)胞支架來研究細(xì)胞生長、遷移和干細(xì)胞分化。此外,3D微納加工技術(shù)還可以應(yīng)用在微創(chuàng)手術(shù)的生物醫(yī)學(xué)儀器,包括植入物,微針和微孔膜等制作。Nanoscribe的無掩模光刻系統(tǒng)在三維微納制造領(lǐng)域是一個不折不扣的多面手,由于其出色的通用性、與材料的普適性和便于操作的軟件工具,在科學(xué)和工業(yè)項目中備受青睞。這種可快速打印的微結(jié)構(gòu)在科研、手板定制、模具制造和小批量生產(chǎn)中具有廣闊的應(yīng)用前景。
談到增材制造技術(shù)(俗稱3D打印技術(shù))估計很多人并不陌生,但是說到增材制造技術(shù)的應(yīng)用,可能大部分人還只停在以下兩個階段:1)原型制造,即通過樹脂、塑料等非金屬材料打印的概念原型與功能原型。其中概念原型用于展示產(chǎn)品設(shè)計的整體概念、立體形態(tài)和布局安排,功能原型則用于優(yōu)化產(chǎn)品的設(shè)計,促進新產(chǎn)品的開發(fā),如檢查產(chǎn)品的結(jié)構(gòu)設(shè)計,模擬裝配、裝配干涉檢驗等。2)間接制造,即通過3D打印技術(shù)完成工、模具制造,再采用3D打印工模具進行零件的制造。Nanoscribe在中國的子公司納糯三維科技(上海)有限公司帶您了解金屬材料增材制造技術(shù)。
3D打印(3DPrinting),又稱作AdditiveManufacturing(增材制造),是一種用digitalfile(數(shù)字文件)生成一個三維物體的過程。在3D打印的過程中,一層層的材料被逐次疊加起來,直到形成后期的物體形態(tài)。每一層可以看作這個物體的一個很薄的橫截面,而每層的厚度則決定了打印的精度,層的厚度越小,打印的精度越高,打印出來的實體與digitalmodel(數(shù)字模型)本身越接近。3D打印在創(chuàng)建物體形態(tài)上有極大的自由度,幾乎不受形態(tài)復(fù)雜度限制,這也是3D打印相比于傳統(tǒng)制造方法(主要是SubtractiveManufacturing即減材制造)的一個重要優(yōu)勢。使用傳統(tǒng)減材制造方法時,部件的復(fù)雜度直接影響流程的復(fù)雜度,復(fù)雜的形態(tài)會使開模難度加大、使用工具更加復(fù)雜、成本大幅上漲。然而對于3D打印技術(shù)來說,由于其獨特的分層成形原理,簡單的形態(tài)和復(fù)雜的形態(tài)幾乎可以一視同仁。譬如,外表閉合一體而內(nèi)部鏤空的形態(tài),或者無接縫的鏈接結(jié)構(gòu)(interlockingstructures),無法通過傳統(tǒng)制造工藝獲得,只能通過AdditiveManufacturing建造。增材制造輪的生產(chǎn)流程也具有很高的靈活性。雙光子增材制造技術(shù)
Nanoscribe在中國的子公司納糯三維科技(上海)有限公司帶您了解增材制造技術(shù)的作用。重慶MEMS增材制造微納加工系統(tǒng)
增材制造技術(shù)能夠簡化光學(xué)器件的制造流程,縮短交貨期并降低材料消耗。更重要的是,增材制造技術(shù)能夠?qū)崿F(xiàn)功能集成的優(yōu)化設(shè)計方案,尤其在衛(wèi)星光學(xué)系統(tǒng)制造領(lǐng)域,增材制造技術(shù)能夠滿足用戶對輕型光學(xué)系統(tǒng)不斷增長的需求,并實現(xiàn)下一代高附加值光學(xué)器件的制造。通過增材制造技術(shù)開發(fā)的下一代光學(xué)儀器中,將越來越多采用緊湊的功能集成設(shè)計,如集成隔熱,冷卻通道,局限的機械和熱接口,以及將光學(xué)功能作為設(shè)備自身結(jié)構(gòu)的一部分。緊湊集成化設(shè)計減少了組件裝配過程中出現(xiàn)問題的風(fēng)險,同時開辟了制造冷卻光學(xué)系統(tǒng),有源光學(xué)系統(tǒng)或自由曲面的新方式。陶瓷增材制造技術(shù)的凈成形能力,還能夠提高準(zhǔn)確性,改善集成/結(jié)合過程的質(zhì)量。在成就高附加值零件方面,3D打印的應(yīng)用還包括很多,除了打印極度復(fù)雜的結(jié)構(gòu)、打印混合材料,3D打印因為技術(shù)種類繁多也帶來了高附加值零件的創(chuàng)新空間,例如3D打印感應(yīng)器、3D打印多層電路、3D打印電池等等重慶MEMS增材制造微納加工系統(tǒng)