之所以能產(chǎn)生這種可見運動或表觀運動,是因為物體以不同的速度在不同的方向上移動,或者是因為相機在移動(或者兩者都有)在很多應(yīng)用程序中,跟蹤表觀運動都是極其重要的。它可用來追蹤運動中的物體,以測定它們的速度、判斷它們的目的地。對于手持?jǐn)z像機拍攝的視頻,可以用這種方法消除抖動或減小抖動幅度,使視頻更加平穩(wěn)。運動估值還可用于視頻編碼,用以壓縮視頻,便于傳輸和存儲。被跟蹤的運動可以是稀疏的(圖像的少數(shù)位置上有運動,稱為稀疏運動),也可以是稠密的(圖像的每個像素都有運動,稱為稠密運動)跟蹤視頻中的特征點從前面章節(jié)介紹的內(nèi)容可以看出,根據(jù)特殊的點分析圖像,可以使計算機視覺算法更加實高效?;垡暪怆娀贏I圖像處理的監(jiān)控監(jiān)管方案能夠?qū)崿F(xiàn)安全生產(chǎn)。廣西目標(biāo)跟蹤產(chǎn)品
跟蹤任務(wù)與檢測任務(wù)有著密切的關(guān)系。從輸入輸出的形式上來看,這兩個任務(wù)是極為相似的。它們均以圖片(或者視頻幀)作為模型的輸入,經(jīng)過處理后,輸出一堆目標(biāo)物置的矩形框。它們之間比較大的區(qū)別體現(xiàn)在對“目標(biāo)物體”的定義上。對于檢測任務(wù)來說,目標(biāo)物體屬于預(yù)先定義好的某幾個類別,如圖1左圖所示;而對于跟蹤任務(wù)來說,目標(biāo)物體指的是在首幀中所指定的跟蹤個體,如圖1右圖所示。實際上,如果我們將每一個跟蹤的個體當(dāng)成是一個類別的話,跟蹤任務(wù)甚至能被當(dāng)成是一種特殊的檢測任務(wù),稱為個體檢測(Instance Detection)。無源目標(biāo)跟蹤工程國產(chǎn)化跟蹤板哪家好?
低空經(jīng)濟成為當(dāng)下火熱的行業(yè)之一,各行各業(yè)都想利用無人機為自己服務(wù),但是卻面臨一個問題,專業(yè)人才嚴(yán)重不足。有關(guān)數(shù)據(jù)顯示,我國無人機經(jīng)營性企業(yè)已超過1.7萬家,全國實名登記的無人機已超過200萬架。而無人機人才的缺口卻多達100萬,這就給低空經(jīng)濟的快速發(fā)展按下了慢速鍵。各大高校陸續(xù)建設(shè)無人機專業(yè),但是四年的教學(xué)路怎么也得一步一個腳印,為了應(yīng)對市場需求,只能從高效率的教學(xué)方法著手,讓學(xué)生更多的結(jié)合實際操作進行學(xué)習(xí),能夠讓學(xué)生在畢業(yè)之后更快的適應(yīng)工作需求,進而提升穩(wěn)定就業(yè)的概率。
如今,無人機在我們生活中的應(yīng)用越來越廣。例如無人機巡檢安防領(lǐng)域,無人機能夠到達人無法觸及的一些角度,能夠很大程度上擴大安防檢查的覆蓋面。在工地、電力、化工等行業(yè),晚上巡檢是必不可少的環(huán)節(jié),并且晚上巡檢還能發(fā)現(xiàn)白天無法看到的一些問題,在白天,一般的相機效果很好,能夠看到非常清晰的監(jiān)控畫面,但是到了晚上,就心有余而力不足。這是因為以前大多數(shù)相機都是可見光相機,在晚上光源不佳時,就會出現(xiàn)成像模糊、漆黑。這種解決辦法是采用紅外熱像儀傳感器,即使在漆黑的夜晚,通過紅外成像也能展現(xiàn)出清晰的畫面。RK3399PRO圖像處理板識別概率超過85%。
當(dāng)兩個圖像之間還有旋轉(zhuǎn)或比例變化時,往往使用基于控制點的方法進行圖像配準(zhǔn)。所謂特征點匹配就是在一幀圖像中尋找具有不變性質(zhì)的結(jié)構(gòu)—特征點,例如,灰度局部極大值、局部邊緣、角等,與另一幀圖像中的同類特征點作匹配,從而求得該兩幀圖像之間的變換關(guān)系。從現(xiàn)實的觀點看,在全部特征點中,只有部分能得到正確的匹配,這是因為特征點尋找算法并非完美無缺。特征點匹配方法具有:處理的數(shù)據(jù)量不斷減少、可能匹配的數(shù)目少于互相關(guān)方法和受照度、幾何的變化影響較小的優(yōu)點。根據(jù)具體的振動情況,選擇合適的特征點和速度較快的匹配策略是該任務(wù)研究的重點。目前的研究工作都致力于圖像間的自動配準(zhǔn),如直接相關(guān)匹配,基于圖像分割技術(shù)的配準(zhǔn),利用封閉輪廓的形心作為控制點的配準(zhǔn)等。RK3588跟蹤板如何實現(xiàn)目標(biāo)的識別及跟蹤?寧夏高效目標(biāo)跟蹤
慧視RV1126板卡可以用于大型公共停車場。廣西目標(biāo)跟蹤產(chǎn)品
通常,遮擋可以分為三種情況:目標(biāo)間遮擋、背景遮擋、自遮擋。對于目標(biāo)之間的相互遮擋,可以選擇根據(jù)目標(biāo)的位置和目標(biāo)特征的先驗知識來處理這一問題。而對于場景結(jié)構(gòu)的導(dǎo)致的部分遮擋此方法則難以判斷,因為難以辨認(rèn)究竟是目標(biāo)形狀發(fā)生變化還是發(fā)生遮擋。所以,處理遮擋問題的通用方法是用線性或非線性動態(tài)建模方法對運動目標(biāo)進行,并在目標(biāo)發(fā)生遮擋時,預(yù)測目標(biāo)的可能位置,一直到目標(biāo)重新出現(xiàn)時再修正它的位置??梢杂每柭鼮V波器來實現(xiàn)估計目標(biāo)的位置,也可以用粒子濾波對目標(biāo)做狀態(tài)估計。廣西目標(biāo)跟蹤產(chǎn)品