目標(biāo)檢測和跟蹤在許多應(yīng)用中都具有重要的意義,例如智能監(jiān)控、自動駕駛和人機(jī)交互等。傳統(tǒng)的目標(biāo)檢測算法需要多次掃描圖像,并使用復(fù)雜的特征提取和分類器來識別目標(biāo)。然而,這些方法在實(shí)時性和準(zhǔn)確性上存在一定的限制。隨著YOLO算法的出現(xiàn),目標(biāo)檢測和跟蹤領(lǐng)域取得了重大突破。YOLO算法概述YOLO算法是一種基于卷積神經(jīng)網(wǎng)絡(luò)的目標(biāo)檢測和跟蹤算法。與傳統(tǒng)方法相比,YOLO算法采用了全新的思路和架構(gòu)。它將目標(biāo)檢測問題轉(zhuǎn)化為一個回歸問題,通過單次前向傳播即可同時預(yù)測圖像中多個目標(biāo)的位置和類別。這使得YOLO算法在速度和準(zhǔn)確性上具備了明顯優(yōu)勢?;垡旳I板卡能夠凸顯AI的智慧之能,變被動為主動,提供多種能主動預(yù)警的視頻分析和人臉識別黑白名單管理。海南無源目標(biāo)跟蹤
近年來,我國多地智慧城市建設(shè)取得較好的成效,諸多創(chuàng)新技術(shù)和解決方案得到廣泛應(yīng)用。而在智慧停車方面,許多公共場所也開始逐步落地應(yīng)用。一車一桿的系統(tǒng),智能識別進(jìn)出入車輛,控制車輛進(jìn)出入,統(tǒng)計車位空缺數(shù),在很大程度上能夠優(yōu)化公共停車場的交通擁堵等問題,能夠提高安全和通行效率。智慧停車閘道裝有車牌識別的機(jī)箱,該機(jī)箱集攝像頭、圖像處理板、顯示屏、內(nèi)存卡等設(shè)備于一體,其中圖像處理板內(nèi)置車牌識別算法,在攝像頭獲取車牌照片后,板卡算法就能進(jìn)行快速又高精度的信息識別,并上傳數(shù)據(jù)到后端控制中心,能夠有效控制車輛的合理出入,方面管理者優(yōu)化管理。貴州目標(biāo)跟蹤功能慧視RK3588圖像處理板能實(shí)現(xiàn)24小時、無間隙信息化監(jiān)控。
隨著社區(qū)等安防向著智能化的進(jìn)一步發(fā)展,越來越多的領(lǐng)域?qū)鹘y(tǒng)意義上的視頻監(jiān)控提出了更加的嚴(yán)格要求,雖然傳統(tǒng)監(jiān)控系統(tǒng)已經(jīng)可以滿足人們“眼見為實(shí)”的要求,但同時這種監(jiān)控系統(tǒng)要求監(jiān)控人員不得不始終看著監(jiān)視屏幕,獲得視頻信息,通過人為的理解和判斷,才能得到相應(yīng)的結(jié)論,做出相應(yīng)的決策。因此,讓監(jiān)控人員長期盯著眾多的電視監(jiān)視器成了一項(xiàng)非常繁重的任務(wù)。特別在一些監(jiān)控點(diǎn)較多的情況下,監(jiān)控人員幾乎無法做到完整的監(jiān)控。
用檢測器模型去解決跟蹤問題,遇到的比較大問題是訓(xùn)練數(shù)據(jù)不足。普通的檢測任務(wù)中,因?yàn)闄z測物體的類別是已知的,可以收集大量數(shù)據(jù)來訓(xùn)練。例如 VOC、COCO 等檢測數(shù)據(jù)集,都有著上萬張圖片用于訓(xùn)練。而如果我們將跟蹤視為一個特殊的檢測任務(wù),檢測物體的類別是由用戶在首先幀的時候所指定的。這意味著能夠用來訓(xùn)練的數(shù)據(jù)只是只是只有少數(shù)幾張圖片。這給檢測器帶來了很大的障礙。而慧視光電定制的目標(biāo)跟蹤算法可以有效的解決這個問題,通過AI自動圖像標(biāo)注平臺SpeedDP的大量模型部署訓(xùn)練,能夠有效解決數(shù)據(jù)訓(xùn)練不足的問題。給我推薦一個做跟蹤板卡的企業(yè)?
傳統(tǒng)意義上的根據(jù)視頻的變化率報警,隨著由于計算機(jī)的廣泛應(yīng)用和數(shù)字圖像的發(fā)展,由于其設(shè)置的不靈活、虛警率高、不抗干擾及接口等方面的原因,正慢慢地面臨淘汰;另外,在重要的場所,比如具有戰(zhàn)略意義的油田油庫,*倉庫,重要的機(jī)密場所、辦公地點(diǎn),水利大壩等等,傳統(tǒng)意義上的由人員操作控制鍵盤,鎖定目標(biāo),控制云臺的運(yùn)動來跟蹤目標(biāo)的模式,由于存在監(jiān)視范圍大、人易疲勞和連續(xù)反應(yīng)速度遲緩等方面的缺陷,這些領(lǐng)域?qū)ψ詣右曨l跟蹤的需求日益迫切。成都RV1126智能跟蹤板提供商。貴州目標(biāo)跟蹤功能
RK3588作為慧視光電開發(fā)的全國產(chǎn)化工業(yè)級板卡,具備高性能、高精度的優(yōu)點(diǎn)。海南無源目標(biāo)跟蹤
很多跟蹤方法都是對通用目標(biāo)的跟蹤,沒有目標(biāo)的類別先驗(yàn)。在實(shí)際應(yīng)用中,還有一個重要的跟蹤是特定物體的跟蹤,比如人臉跟蹤、手勢跟蹤和人體跟蹤等。特定物體的跟蹤與前面介紹的方法不同,它更多地依賴對物體訓(xùn)練特定的檢測器。人臉跟蹤由于它的明顯特征,它的跟蹤就主要由檢測來實(shí)現(xiàn),比如早期的Viola-Jones檢測框架和當(dāng)前利用深度學(xué)習(xí)的人臉檢測或人臉特征點(diǎn)檢測模型。手勢跟蹤在應(yīng)用主要集中在跟蹤特定的手型,比如跟蹤手掌或者拳頭。設(shè)定特定的手型可以方便地訓(xùn)練手掌或拳頭的檢測器。海南無源目標(biāo)跟蹤