目標檢測和跟蹤在許多應用中都具有重要的意義,例如智能監(jiān)控、自動駕駛和人機交互等。傳統(tǒng)的目標檢測算法需要多次掃描圖像,并使用復雜的特征提取和分類器來識別目標。然而,這些方法在實時性和準確性上存在一定的限制。隨著YOLO算法的出現(xiàn),目標檢測和跟蹤領域取得了重大突破。YOLO算法概述YOLO算法是一種基于卷積神經網絡的目標檢測和跟蹤算法。與傳統(tǒng)方法相比,YOLO算法采用了全新的思路和架構。它將目標檢測問題轉化為一個回歸問題,通過單次前向傳播即可同時預測圖像中多個目標的位置和類別。這使得YOLO算法在速度和準確性上具備了明顯優(yōu)勢。RK3588圖像處理板識別概率超過85%。穩(wěn)定目標跟蹤工程
序列圖像的差異通常是運動目標檢測和跟蹤的出發(fā)點,認為目標的運動是圖像差異的根本原因。但是,這是建立在背景本身不運動的前提下的。因此,在許多跟蹤系統(tǒng)中,比如車載,由于車的振動導致傳感器位置的變化,表現(xiàn)在圖像上就是背景的運動,因此在做差圖像和背景自動更新之前,都必須先經過配準,即讓所有圖像在都同一個坐標系之下,以消除背景的運動。在不同的應用場合,配準的方法多種多樣,比如當兩個圖像之間只有平移變化時,計算出它們的平移量即可實現(xiàn)配準;由于平移變化對圖像的相位信息影響較大,在頻率域利用相位相關可以實現(xiàn)配準。黑龍江自主可控目標跟蹤慧視光電開發(fā)的慧視RV1126圖像處理板,采用了國產高性能CPU。
然后在下一幀采集的圖像中對目標對象進行特征提??;特征匹配的過程既是將提取出來的目標對象的特征與我們事先已經建立的特征模板進行匹配,通過與特征模板的相似程度來確定被跟蹤的目標對象,實現(xiàn)對目標的跟蹤。基于特征的跟蹤算法的優(yōu)點在于速度快、對運動目標的尺度、形變和亮度等變化不敏感,能滿足特定場合的處理要求。但由于特征具有稀疏性和不規(guī)則性,所以該算法對于噪聲、遮擋、圖像模糊等比較敏感,如果目標發(fā)生旋轉,則部分特征點會消失,新的特征點會出現(xiàn),因此需要對匹配模板進行更新。
在目標跟蹤領域,場景信息與目標狀態(tài)的融合十分重要,首先,場景信息包含了豐富的環(huán)境上下文信息,對場景信息進行分析及充分利用,能夠有效地獲取場景的先驗知識,降低復雜的背景環(huán)境以及場景中與目標相似的物體的干擾;同樣地,對目標的準確描述有助于提升檢測與跟蹤算法的準確性與魯棒性.總之,嘗試研究結合背景信息和前景目標信息的分析方法,融合場景信息與目標狀態(tài),將有助于提高算法的實用性能?;垡暪怆婇_發(fā)的圖像處理板,具備高性能、高精度的特點,能夠進行精確的目標跟蹤。成都慧視的跟蹤版是國產化的!
無人機吊艙能夠通過定制算法和精細定位技術實現(xiàn)農藥精細噴灑、農作物精細拋糧等操作。穩(wěn)定目標跟蹤工程
當兩個圖像之間還有旋轉或比例變化時,往往使用基于控制點的方法進行圖像配準。所謂特征點匹配就是在一幀圖像中尋找具有不變性質的結構—特征點,例如,灰度局部極大值、局部邊緣、角等,與另一幀圖像中的同類特征點作匹配,從而求得該兩幀圖像之間的變換關系。從現(xiàn)實的觀點看,在全部特征點中,只有部分能得到正確的匹配,這是因為特征點尋找算法并非完美無缺。特征點匹配方法具有:處理的數(shù)據(jù)量不斷減少、可能匹配的數(shù)目少于互相關方法和受照度、幾何的變化影響較小的優(yōu)點。根據(jù)具體的振動情況,選擇合適的特征點和速度較快的匹配策略是該任務研究的重點。目前的研究工作都致力于圖像間的自動配準,如直接相關匹配,基于圖像分割技術的配準,利用封閉輪廓的形心作為控制點的配準等。穩(wěn)定目標跟蹤工程