美國(guó)靈長(zhǎng)類多光子顯微鏡Ultima Investigator

來源: 發(fā)布時(shí)間:2025-05-28

多光子激光掃描顯微鏡行業(yè)發(fā)展,世界多光子激光掃描顯微鏡產(chǎn)業(yè)主要布局在德國(guó)和日本,德國(guó)是以徠卡顯微系統(tǒng)和蔡司為,而日本以尼康和奧林巴斯公司為,2020年,上述企業(yè)占據(jù)著世界多光子激光掃描顯微鏡市場(chǎng)64.44%的市場(chǎng)份額,其發(fā)展戰(zhàn)略左右著多光子激光掃描顯微鏡市場(chǎng)的走向。目前世界市場(chǎng)對(duì)多光子激光掃描顯微鏡的需求在增長(zhǎng),中國(guó)市場(chǎng)這方面的需求增長(zhǎng)更快,未來五年多光子激光掃描顯微鏡市場(chǎng)的發(fā)展在中國(guó)將具有很大的發(fā)展?jié)摿?。多光子顯微鏡的發(fā)展現(xiàn)狀及未來發(fā)展趨勢(shì)。美國(guó)靈長(zhǎng)類多光子顯微鏡Ultima Investigator

美國(guó)靈長(zhǎng)類多光子顯微鏡Ultima Investigator,多光子顯微鏡

因斯蔻浦(上海)生物科技有限公司雙光子顯微鏡的基本原理是:在高光子密度的情況下,熒光分子可以同時(shí)吸收2個(gè)長(zhǎng)波長(zhǎng)的光子,在經(jīng)過一個(gè)很短的所謂激發(fā)態(tài)壽命的時(shí)間后,發(fā)射出一個(gè)波長(zhǎng)較短的光子;其效果和使用一個(gè)波長(zhǎng)為長(zhǎng)波長(zhǎng)一半的光子去激發(fā)熒光分子是相同的。雙光子激發(fā)需要很高的光子密度,為了不損傷細(xì)胞,雙光子顯微鏡使用高能量鎖模脈沖激光器。這種激光器發(fā)出的激光具有很高的峰值能量和很低的平均能量,其脈沖寬度只有100飛秒,而其周期可以達(dá)到80至100兆赫茲。在使用高數(shù)值孔徑的物鏡將脈沖激光的光子聚焦時(shí),物鏡的焦點(diǎn)處的光子密度是比較高的,雙光子激發(fā)只發(fā)生在物鏡的焦點(diǎn)上,所以雙光子顯微鏡不需要共聚焦***,提高了熒光檢測(cè)效率。bruker多光子顯微鏡層析成像多光子顯微鏡在臨床前評(píng)價(jià)IA形態(tài)、細(xì)胞外基質(zhì)、細(xì)胞密度和血管形成等方面顯示出強(qiáng)大的作用。

美國(guó)靈長(zhǎng)類多光子顯微鏡Ultima Investigator,多光子顯微鏡

2020年,JianglaiWu等人提出提高2PM橫向掃描速率的裝置,稱為FACED(free-spaceangular-chirp-enhanceddelay)。圓柱透鏡將激光束一維聚焦,會(huì)聚角為Δθ。光束進(jìn)入到一對(duì)幾乎平行的高反射鏡中,其間距為S,偏角為α。經(jīng)過反射鏡多次反射后,激光脈沖被分成多個(gè)傳播方向不同的子脈沖(N=Δθ/α),脈沖間以2S/c的時(shí)間延遲(c,光速)回射。FACED模塊輸出處的子脈沖序列可以看作從虛擬光源陣列發(fā)出的光,這些子脈沖在中繼到顯微鏡物鏡后形成了一個(gè)空間上分離且時(shí)間延遲的焦點(diǎn)陣列。然后將該模塊并入具有高速數(shù)據(jù)采集系統(tǒng)的標(biāo)準(zhǔn)雙光子熒光顯微鏡中。光源是具有1MHz重復(fù)頻率的920nm的激光器,通過FACED模塊可產(chǎn)生80個(gè)脈沖焦點(diǎn),其脈沖時(shí)間間隔為2ns。這些焦點(diǎn)是虛擬源的圖像,虛擬源越遠(yuǎn),物鏡處的光束尺寸越大,焦點(diǎn)越小。光束沿y軸比x軸能更好地充滿物鏡,從而導(dǎo)致x軸的橫向分辨率為0.82μm,y軸的橫向分辨率為0.35μm。

隨著現(xiàn)代分子生物學(xué)技術(shù)的快速發(fā)展和科學(xué)技術(shù)的進(jìn)步,特別是后基因組時(shí)代的到來,人們已經(jīng)能夠根據(jù)需要建立各種細(xì)胞模型,這為在體內(nèi)研究基因表達(dá)、分子間相互作用、細(xì)胞增殖、細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)、誘導(dǎo)分化、細(xì)胞凋亡和新生血管生成提供了良好的生物學(xué)條件。然而,盡管利用現(xiàn)有的分子生物學(xué)方法對(duì)基因表達(dá)與蛋白質(zhì)的相互作用進(jìn)行了深入細(xì)致的研究,但仍然無法實(shí)現(xiàn)對(duì)蛋白質(zhì)和基因活性的實(shí)時(shí)動(dòng)態(tài)監(jiān)測(cè)。在細(xì)胞的生理過程中,基因尤其是蛋白質(zhì)的表達(dá)、修飾和相互作用往往是可逆的、動(dòng)態(tài)變化的。目前,分子生物學(xué)方法無法捕捉到蛋白質(zhì)和基因的這些變化,但獲得這些信息對(duì)于研究基因表達(dá)與蛋白質(zhì)的相互作用非常重要。因此,有必要發(fā)展一種動(dòng)態(tài)、實(shí)時(shí)、連續(xù)監(jiān)測(cè)蛋白質(zhì)和基因活性的方法。多光子顯微鏡之類的先進(jìn)光學(xué)技術(shù)能夠在活生物體的大腦表面下更深地成像。

美國(guó)靈長(zhǎng)類多光子顯微鏡Ultima Investigator,多光子顯微鏡

與傳統(tǒng)的單光子寬視野熒光顯微鏡相比,多光子顯微鏡具有光學(xué)切片和深層成像等功能,這兩個(gè)優(yōu)勢(shì)極大地促進(jìn)了研究者們對(duì)于完整大腦深處神經(jīng)的了解與認(rèn)識(shí)。2019年,JeromeLecoq等人從大腦深處的神經(jīng)元成像、大量神經(jīng)元成像、高速神經(jīng)元成像這三個(gè)方面論述了相關(guān)的MPM技術(shù)。想要將神經(jīng)元活動(dòng)與復(fù)雜行為聯(lián)系起來,通常需要對(duì)大腦皮質(zhì)深層的神經(jīng)元進(jìn)行成像,這就要求MPM具有深層成像的能力。激發(fā)和發(fā)射光會(huì)被生物組織高度散射和吸收是限制MPM成像深度的主要因素,雖然可以通過增加激光強(qiáng)度來解決散射問題,但這會(huì)帶來其他問題,例如燒壞樣品、離焦和近表面熒光激發(fā)。增加MPM成像深度比較好的方法是用更長(zhǎng)的波長(zhǎng)作為激發(fā)光。全球多光子顯微鏡主要消費(fèi)地區(qū)分析,包括消費(fèi)量及份額等。飛秒激光多光子顯微鏡成像深度

多光子顯微鏡的分辨率比傳統(tǒng)的單光子共聚焦要低的多。美國(guó)靈長(zhǎng)類多光子顯微鏡Ultima Investigator

快速光柵掃描有多種實(shí)現(xiàn)方式,使用振鏡進(jìn)行快速2D掃描,將振鏡和可調(diào)電動(dòng)透鏡結(jié)合在一起進(jìn)行快速3D掃描,但可調(diào)電動(dòng)透鏡由于機(jī)械慣性的限制在軸向無法快速進(jìn)行焦點(diǎn)切換,影響成像速度,現(xiàn)可使用空間光調(diào)制器(SLM)代替。遠(yuǎn)程聚焦也是一種實(shí)現(xiàn)3D成像的手段,如圖2所示。在LSU模塊中,掃描振鏡進(jìn)行橫向掃描,ASU模塊包括物鏡L1和反射鏡M,通過調(diào)控M的位置實(shí)現(xiàn)軸向掃描。該技術(shù)不僅可以校正主物鏡L2引入的光學(xué)像差,還可以進(jìn)行快速的軸向掃描。想要獲得更多神經(jīng)元成像,可以通過調(diào)整顯微鏡的物鏡設(shè)計(jì)來擴(kuò)大FOV,但是具有大NA和大FOV的物鏡通常重量較大,無法快速移動(dòng)以進(jìn)行快速軸向掃描,因此大型FOV系統(tǒng)需要依賴于遠(yuǎn)程聚焦、SLM和可調(diào)電動(dòng)透鏡。美國(guó)靈長(zhǎng)類多光子顯微鏡Ultima Investigator