油對T2分布的影響隨孔隙中流體的不同而不同。水和輕質(zhì)油圖4.6(上)為水和輕質(zhì)油充填水濕地層的體積模型。模型中各組分之間的明顯邊界并不意味著對應(yīng)的衰變譜之間的明顯邊界。如果用較短的TE和較長的TW來測量回波序列,那么水將具有較寬的T2分布,而輕質(zhì)油則傾向于在單個T2值附近顯示更窄的分布水與輕質(zhì)油的擴散系數(shù)差異不大;因此,兩種流體之間的D對比不會很明顯。輕質(zhì)油和孔隙水的T1值差異很大;因此,兩種液體之間的T1對比將被檢測到。水泥基材料-土壤-巖芯等多孔介質(zhì)磁共振分析儀可用于非常規(guī)巖芯的油母與瀝青等有機質(zhì)檢測分析。一體式水泥基材料-土壤-巖芯等多孔介質(zhì)液體驅(qū)替對巖芯影響
達西定律描述飽和土中水的滲流速度與水力坡降之間的線性關(guān)系的規(guī)律,又稱線性滲流定律。1856年由法國工程師H.P.G.達西通過實驗總結(jié)得到。1852-1855年,達西進行了水通過飽和砂的實驗研究,發(fā)現(xiàn)了滲流量Q與上下游水頭差(h2-h1)和垂直于水流方向的截面積A成正比,而與滲流長度L成反比,即:Q=K*A*(h2-h1)/L。
非常規(guī)儲層呈現(xiàn)低速非達西滲流特征,存在啟動壓力梯度;滲流曲線由平緩過渡的兩段組成,較低滲流速度下的上凹型非線性滲流曲線和較高流速下的擬線性滲流曲線,滲流曲線主要受巖芯滲透率的影響,滲透率越低,啟動壓力梯度越大,非達西現(xiàn)象越明顯。需要人工壓裂注氣液,增加驅(qū)替力,形成有效開采的流動機制。 低場磁共振水泥基材料-土壤-巖芯等多孔介質(zhì)無損檢測磁共振水泥基材料分析儀是用于測試水泥和混凝土樣品的臺式磁共振分析系統(tǒng)。
氣體、輕質(zhì)油、水和一些中等粘度的油表現(xiàn)出明顯的擴散誘導當它們處于梯度磁場和長回波間隔的CPMG序列時,會發(fā)生弛豫。對于這些流體,與擴散機制相關(guān)的弛豫時間常數(shù)的Tdison成為檢測它們的重要工具。當靜磁場中存在***的梯度時,分子擴散會引起附加減相,因此增加了弛豫速率(1/T2)。這種失相是由分子移動到磁場強度不同的區(qū)域,因此其中歲差率不同。擴散弛豫對弛豫時間T1沒有影響率(1/T)。與自由弛豫一樣,物理性質(zhì)如粘度和分子組成控制著擴散系數(shù)。同樣,環(huán)境條件、溫度和壓力都會影響擴散。由式3.12~3.14可知,氣、油、水的擴散系數(shù)隨溫度的升高而增大(粘度n隨溫度的升高而減小)。氣體的擴散系數(shù)隨壓力的增加而減小,因為氣體密度隨壓力的增加而增加。油的擴散系數(shù)差別很大,因為不同的油表現(xiàn)出***的分子組成,這導致了***的粘度范圍。
水泥基材料是一種非常復雜的材料。 未水化的水泥以晶體礦物為主,但水化后的水泥基材料既含有晶態(tài)的鈣礬石、氫氧化鈣及未水化的水泥礦物,又有C-S-H凝膠及其它非晶態(tài)相,且水化產(chǎn)物以非晶態(tài)物質(zhì)為主。同時其結(jié)構(gòu)中既含有固態(tài)物質(zhì),又有液態(tài)的孔溶液及氣孔。由于水泥基材料組份和結(jié)構(gòu)的復雜性,大部分的現(xiàn)代測試分析方法在研究水泥水化及其它過程時所能得到的信號不清晰(X射線衍射為典型),而核磁共振技術(shù)無此方面限制,它可表征水分在水泥基材料中的分布及傳輸,極大地促進水泥基材料的研究。水泥基材料-土壤-巖芯等多孔介質(zhì)磁共振分析儀可對水泥基材料對水分的吸收及酸腐蝕進行研究。
根據(jù)核磁共振T2譜,不只可以得到孔隙度、滲透率等儲層常規(guī)物性參數(shù),而且與離心、水驅(qū)油等實驗技術(shù)相結(jié)合,還可以獲得可動流體百分數(shù)、剩余油微觀分布狀態(tài)等儲層評價所需的參數(shù)。與孔隙度、滲透率等常規(guī)物性參數(shù)不同,潤濕性是一個與儲層巖石礦物成分、孔隙流體數(shù)量和類型等有關(guān)的相對特征參數(shù),并且其在油藏水驅(qū)開發(fā)過程中會發(fā)生一定程度的變化。根據(jù)核磁共振弛豫機制,T2譜上弛豫時間較長的核磁信號對應(yīng)巖石中較大孔隙中的流體,T2譜上弛豫時間較短的核磁信號對應(yīng)細微孔隙中的流體。江蘇麥格瑞電子科技有限公司積極探索磁共振應(yīng)用創(chuàng)新。高精度水泥基材料-土壤-巖芯等多孔介質(zhì)系統(tǒng)原理
低場核磁共振技術(shù)對儀器環(huán)境要求不高,具有操作簡單快捷、檢測速度快、對人體無輻射。一體式水泥基材料-土壤-巖芯等多孔介質(zhì)液體驅(qū)替對巖芯影響
對于水泥中的結(jié)晶水,主要來自于水泥水化過程的產(chǎn)生的微晶相氫氧化鈣中的羥基信號、鈣礬石中的結(jié)晶水信號,其T2弛豫時間非常短~10us左右。常規(guī)的T1-T2測量方法能夠重聚由于化學位移各向異性、潛在的磁場不均勻性以及異核偶極耦合相互作用造成的磁化損失,對于氫氧化鈣中同核偶極耦合作用造成的信號損失無能為力,因此常規(guī)T1-T2測量方法檢測到水泥基材料中的固體信號比較困難。而固體回波可以重聚氫氧化鈣中孤立的1/2自旋對產(chǎn)生的同核偶極耦合作用造成的信號損失,因而可以檢測到水泥基材料中的固體信號。我們將多固體回波序列用于T1-T2弛豫測量,多固體回波序列(圖1)由標準二維弛豫序列結(jié)合固體回波組成。目前,該二維脈沖序列測量方法已用于巖芯、礦物等多孔介質(zhì)材料。我們將二維固體脈沖測量方法應(yīng)用于水泥樣本的研究中,目的是使用低場核磁共振技術(shù)獲得更完整的水泥材料中的固體信號。一體式水泥基材料-土壤-巖芯等多孔介質(zhì)液體驅(qū)替對巖芯影響