廈門(mén)科技AIGC案例

來(lái)源: 發(fā)布時(shí)間:2023-12-06

    AIGC的產(chǎn)品形態(tài)有哪些?1、基礎(chǔ)層(模型服務(wù))基礎(chǔ)層為采用預(yù)訓(xùn)練大模型搭建的基礎(chǔ)設(shè)施。由于開(kāi)發(fā)預(yù)訓(xùn)練大模型技術(shù)門(mén)檻高、投入成本高,因此,該層主要由少數(shù)頭部企業(yè)或研發(fā)機(jī)構(gòu)主導(dǎo)。如谷歌、微軟、Meta、OpenAI、DeepMind、?;A(chǔ)層的產(chǎn)品形態(tài)主要包括兩種:一種為通過(guò)受控的api接口收取調(diào)用費(fèi);另一種為基于基礎(chǔ)設(shè)施開(kāi)發(fā)專(zhuān)業(yè)的軟件平臺(tái)收取費(fèi)用。2、中間層(2B)該層與基礎(chǔ)層的特別主要區(qū)別在于,中間層不具備開(kāi)發(fā)大模型的能力,但是可基于開(kāi)源大模型等開(kāi)源技術(shù)進(jìn)行改進(jìn)、抽取或模型二次開(kāi)發(fā)。該層為在大模型的基礎(chǔ)上開(kāi)發(fā)的場(chǎng)景化、垂直化、定制化的應(yīng)用模型或工具。在AIGC的應(yīng)用場(chǎng)景中基于大模型抽取出個(gè)性化、定制化的應(yīng)用模型或工具滿(mǎn)足行業(yè)需求。如基于開(kāi)源的StableDiffusion大模型所開(kāi)發(fā)的二次元風(fēng)格圖像生成器,滿(mǎn)足特定行業(yè)場(chǎng)景需求。中間層的產(chǎn)品形態(tài)、商業(yè)模式與基礎(chǔ)層保持一致,分別為接口調(diào)用費(fèi)與平臺(tái)軟件費(fèi)。3、應(yīng)用層(2C)應(yīng)用層主要基于基礎(chǔ)層與中間層開(kāi)發(fā),面向C端的場(chǎng)景化工具或軟件產(chǎn)品。應(yīng)用層更加關(guān)注用戶(hù)的需求,將AIGC技術(shù)切實(shí)融入用戶(hù)需求,實(shí)現(xiàn)不同形態(tài)、不同功能的產(chǎn)品落地。可以通過(guò)網(wǎng)頁(yè)、小程序、群聊、app等不同的載體呈現(xiàn)。NORBERT WIENER是期初研究反饋理論的美國(guó)人之一。廈門(mén)科技AIGC案例

廈門(mén)科技AIGC案例,AIGC

    例如繁重的科學(xué)和工程計(jì)算本來(lái)是要人腦來(lái)承擔(dān)的,如今計(jì)算機(jī)不但能完成這種計(jì)算,而且能夠比人腦做得更快、更準(zhǔn)確,因此當(dāng)代人已不再把這種計(jì)算看作是“需要人類(lèi)智能才能完成的復(fù)雜任務(wù)”,可見(jiàn)復(fù)雜工作的定義是隨著時(shí)代的發(fā)展和技術(shù)的進(jìn)步而變化的,人工智能這門(mén)科學(xué)的具體目標(biāo)也自然隨著時(shí)代的變化而發(fā)展。它一方面不斷獲得新的進(jìn)展,另一方面又轉(zhuǎn)向更有意義、更加困難的目標(biāo)。通常,“機(jī)器學(xué)習(xí)”的數(shù)學(xué)基礎(chǔ)是“統(tǒng)計(jì)學(xué)”、“信息論”和“控制論”。還包括其他非數(shù)學(xué)學(xué)科。這類(lèi)“機(jī)器學(xué)習(xí)”對(duì)“經(jīng)驗(yàn)”的依賴(lài)性很強(qiáng)。計(jì)算機(jī)需要不斷從解決一類(lèi)問(wèn)題的經(jīng)驗(yàn)中獲取知識(shí),學(xué)習(xí)策略,在遇到類(lèi)似的問(wèn)題時(shí),運(yùn)用經(jīng)驗(yàn)知識(shí)解決問(wèn)題并積累新的經(jīng)驗(yàn),就像普通人一樣。我們可以將這樣的學(xué)習(xí)方式稱(chēng)之為“連續(xù)型學(xué)習(xí)”。但人類(lèi)除了會(huì)從經(jīng)驗(yàn)中學(xué)習(xí)之外,還會(huì)創(chuàng)造,即“跳躍型學(xué)習(xí)”。這在某些情形下被稱(chēng)為“靈感”或“頓悟”。一直以來(lái),計(jì)算機(jī)特別難學(xué)會(huì)的就是“頓悟”。 公司AIGC弊端人類(lèi)的語(yǔ)言,人類(lèi)的智能是如此的復(fù)雜,以至于我們的研究還并未觸及其導(dǎo)向本質(zhì)的外延部分的邊沿。

廈門(mén)科技AIGC案例,AIGC

    AIGC推動(dòng)創(chuàng)意落地,突破表達(dá)瓶頸雖然AI能幫助人類(lèi)更好的釋放創(chuàng)意,但從劇本到熒幕仍是一段漫長(zhǎng)的距離。從創(chuàng)意到表達(dá)的跨越,AI可以保駕護(hù)航,幫助人類(lèi)化不可能為可能。舉例來(lái)說(shuō),當(dāng)前勞動(dòng)密集型的影視生產(chǎn)方式難以滿(mǎn)足觀眾對(duì)質(zhì)量日益提高的要求。2009年上映的《阿凡達(dá)》令全球觀眾旗艦了解3D電影的魅力,此后沉浸式觀影體驗(yàn)成了影視產(chǎn)業(yè)鏈上共同的追求。為了滿(mǎn)足這種追求,影視特技與應(yīng)用呈現(xiàn)井噴式發(fā)展,但后期制作與渲染,復(fù)雜程度也都水漲船高,傳統(tǒng)的作業(yè)方式已經(jīng)難以為繼,而AI技術(shù)就有推動(dòng)變革的潛力。從技術(shù)角度來(lái)說(shuō),影視特技行業(yè)的作業(yè)流程是極為繁瑣的,比如場(chǎng)景中的建模就需要從一草一木、一人一物開(kāi)始,逐漸打造世界的雛形,再通過(guò)骨骼綁定和動(dòng)作設(shè)計(jì)讓模型活起來(lái),之后的定分鏡、調(diào)燈光、鋪軌道、取鏡頭等等無(wú)不費(fèi)時(shí)費(fèi)力,后期的解算和渲染等工作同樣如此??梢哉f(shuō)在影視工作的每個(gè)環(huán)節(jié)都有大量重復(fù)性工作或等待時(shí)間,無(wú)形中拖慢了工作節(jié)奏。因此現(xiàn)在就有企業(yè)致力于解封流程生產(chǎn)力,比如優(yōu)酷的“妙嘆”工具箱,在動(dòng)漫中實(shí)時(shí)渲染,幫助工作者實(shí)時(shí)把握效果或做出修改,節(jié)省了大量成本,減輕人員負(fù)擔(dān),目前已被多家國(guó)漫企業(yè)采用。

    AIGC的中心技術(shù)有哪些?(1)變分自編碼(VariationalAutoencoder,VAE)變分自編碼器是深度生成模型中的一種,由Kingma等人在2014年提出,與傳統(tǒng)的自編碼器通過(guò)數(shù)值方式描述潛空間不同,它以概率方式對(duì)潛在空間進(jìn)行觀察,在數(shù)據(jù)生成方面應(yīng)用價(jià)值較高。VAE分為兩部分,編碼器與解碼器。編碼器將原始高維輸入數(shù)據(jù)轉(zhuǎn)換為潛在空間的概率分布描述;解碼器從采樣的數(shù)據(jù)進(jìn)行重建生成新數(shù)據(jù)。VAE模型(2)生成對(duì)抗網(wǎng)絡(luò)(GenerativeAdversarialNetworks,GAN)2014年IanGoodFellow提出了生成對(duì)抗網(wǎng)絡(luò),成為早期出名的生成模型。GAN使用零和博弈策略學(xué)習(xí),在圖像生成中應(yīng)用普遍。以GAN為基礎(chǔ)產(chǎn)生了多種變體,如DCGAN,StytleGAN,CycleGAN等。GAN模型GAN包含兩個(gè)部分:生成器:學(xué)習(xí)生成合理的數(shù)據(jù)。對(duì)于圖像生成來(lái)說(shuō)是給定一個(gè)向量,生成一張圖片。其生成的數(shù)據(jù)作為判別器的負(fù)樣本。判別器:判別輸入是生成數(shù)據(jù)還是真實(shí)數(shù)據(jù)。網(wǎng)絡(luò)輸出越接近于0,生成數(shù)據(jù)可能性越大;反之,真實(shí)數(shù)據(jù)可能性越大。 MINSKY和MARR的成果如今用到了生產(chǎn)線上的相機(jī)和計(jì)算機(jī)中,進(jìn)行質(zhì)量控制.

廈門(mén)科技AIGC案例,AIGC

    AIGC+資訊行業(yè)在信息化時(shí)代,社會(huì)中充斥著各種資訊,同時(shí)這些資訊也有高標(biāo)準(zhǔn)、需求大、時(shí)效強(qiáng)等特點(diǎn)。自2014年起,AIGC已開(kāi)始用于新聞資訊領(lǐng)域,因此資訊行業(yè)是AIGC商業(yè)化相對(duì)成熟的賽道。、AIGC輔助信息收集,打造堅(jiān)實(shí)基礎(chǔ)精良的新聞產(chǎn)出必定需要全部、高效、準(zhǔn)確的信息收集與整理的基礎(chǔ)上。按照傳統(tǒng)的業(yè)模式,工作人員需要親臨現(xiàn)場(chǎng),通過(guò)各種手段才能獲得足夠且扎實(shí)的信息。現(xiàn)在的AI已經(jīng)能對(duì)該環(huán)節(jié)高效賦能,例如科大訊飛的AI轉(zhuǎn)寫(xiě)工具可以幫助記者實(shí)時(shí)生成文稿,自動(dòng)撰寫(xiě)提綱、精簡(jiǎn)語(yǔ)句等,進(jìn)而提高工作效率,保證特別終產(chǎn)出的時(shí)效性。除幫助獲取一手信息外,AI也可以幫助精確檢索二手信息,收集素材。在高性能的AIGC工具如ChatGPT出現(xiàn)后,就可以像常人對(duì)話一樣直接提問(wèn)并獲得答案。雖然難免還是會(huì)有這樣那樣的問(wèn)題,但作為工具而言,AIGC的意義已經(jīng)非常明顯了。、AIGC支持資訊生成,實(shí)現(xiàn)高效產(chǎn)出在資訊寫(xiě)作等生成環(huán)節(jié),基于自然語(yǔ)言生成和自然語(yǔ)言處理技術(shù),AIGC已經(jīng)逐步得到從業(yè)者和消費(fèi)者的認(rèn)可,因此有不少企業(yè)積極參與其中。以產(chǎn)出數(shù)量為例,雅虎等外媒合作的AutomatedInsights,其撰稿工具Wordsmith能在一分鐘內(nèi)生成兩千條新聞。 個(gè)人電腦和眾多技術(shù)雜志使計(jì)算機(jī)技術(shù)展現(xiàn)在人們面前.南平軟件AIGC是什么

當(dāng)越來(lái)越多的程序涌現(xiàn)時(shí),MCCARTHY正忙于一個(gè)AI史上的突破.廈門(mén)科技AIGC案例

    智能模擬機(jī)器視、聽(tīng)、觸、感覺(jué)及思維方式的模擬:指紋識(shí)別,人臉識(shí)別,視網(wǎng)膜識(shí)別,虹膜識(shí)別,掌紋識(shí)別,行家系統(tǒng),智能搜索,定理證明,邏輯推理,博弈,信息感應(yīng)與辨證處理。學(xué)科范疇人工智能是一門(mén)邊沿學(xué)科,屬于自然科學(xué)、社會(huì)科學(xué)、技術(shù)科學(xué)三向交叉學(xué)科。涉及學(xué)科哲學(xué)和認(rèn)知科學(xué),數(shù)學(xué),神經(jīng)生理學(xué),心理學(xué),計(jì)算機(jī)科學(xué),信息論,控制論,不定性論,仿生學(xué),社會(huì)結(jié)構(gòu)學(xué)與科學(xué)發(fā)展觀。研究范疇語(yǔ)言的學(xué)習(xí)與處理,知識(shí)表現(xiàn),智能搜索,推理,規(guī)劃,機(jī)器學(xué)習(xí),知識(shí)獲取,組合調(diào)度問(wèn)題,感知問(wèn)題,模式識(shí)別,邏輯程序設(shè)計(jì),軟計(jì)算,不精確和不確定的管理,人工生命,神經(jīng)網(wǎng)絡(luò),復(fù)雜系統(tǒng),遺傳算法人類(lèi)思維方式,關(guān)鍵的難題還是機(jī)器的自主創(chuàng)造性思維能力的塑造與提升。安全問(wèn)題人工智能還在研究中,但有學(xué)者認(rèn)為讓計(jì)算機(jī)擁有智商是很危險(xiǎn)的,它可能會(huì)反抗人類(lèi)。這種隱患也在多部電影中發(fā)生過(guò),其主要的關(guān)鍵是允不允許機(jī)器擁有自主意識(shí)的產(chǎn)生與延續(xù),如果使機(jī)器擁有自主意識(shí),則意味著機(jī)器具有與人同等或類(lèi)似的創(chuàng)造性,自我保護(hù)意識(shí),情感和自發(fā)行為。因此,人工智能的安全可控問(wèn)題要同步從技術(shù)層面來(lái)解決。隨著技術(shù)的發(fā)展成熟,監(jiān)管形式可能逐步發(fā)生變化。 廈門(mén)科技AIGC案例