2025年4月,張洪忠表示研究顯示,目前國內(nèi)主流媒體已經(jīng)將大模型技術(shù)應(yīng)用在內(nèi)容生產(chǎn)的全鏈條之中,技術(shù)的采納程度比較高。在使用水平和工作績效上,縣級媒體、市州級媒體、省級媒體、**級媒體呈現(xiàn)逐級遞增的特點(diǎn)??傮w上,媒體從業(yè)者對大模型技術(shù)抱持積極的態(tài)度,技術(shù)的接受...
AI客服無法準(zhǔn)確理解問題,難以轉(zhuǎn)接到人工客服等情形,均涉嫌侵犯消費(fèi)者的知情權(quán)和選擇權(quán)。一些商家不能為了節(jié)省成本,利用AI客服來敷衍應(yīng)付消費(fèi)者。當(dāng)前,AI客服的發(fā)展應(yīng)用是趨勢所在。但是,不管人工智能多么發(fā)達(dá),都不能忽視人**本真的情感、**真實(shí)的需求。 [3](...
該系統(tǒng)是一種點(diǎn)式或條式的知識(shí)管理系統(tǒng),因此是一種細(xì)粒度的管理工具。這中細(xì)粒度的知識(shí)管理工具,使得大型企業(yè)更有效,更能從知識(shí)的運(yùn)行中實(shí)時(shí)地掌握企業(yè)的運(yùn)行狀態(tài),從而更有效地進(jìn)行科學(xué)決策。例如,在客戶的統(tǒng)計(jì)信息、熱點(diǎn)業(yè)務(wù)統(tǒng)計(jì)分析、VIP統(tǒng)計(jì)信息等可以在極短的時(shí)間內(nèi)獲...
指令微調(diào)與人類對齊雖然預(yù)訓(xùn)練賦予了模型***的語言和知識(shí)理解能力,但由于主要任務(wù)是文本補(bǔ)全,模型在直接應(yīng)用于具體任務(wù)時(shí)可能存在局限。為此,需要通過指令微調(diào)(Supervised Fine-tuning, SFT)和人類對齊進(jìn)一步激發(fā)和優(yōu)化模型能力。指令微調(diào):利...
倫理對齊風(fēng)險(xiǎn):LLM的過度保守傾向可能扭曲投資決策,需通過倫理約束優(yōu)化模型對齊(歐陽樹淼等,2025)。3. 安全與合規(guī)挑戰(zhàn)01:34如何看待人工智能面臨的安全問題數(shù)據(jù)安全漏洞:LLM高度依賴敏感數(shù)據(jù),面臨多重安全風(fēng)險(xiǎn):○ 技術(shù)漏洞:定制化訓(xùn)練過程中,數(shù)據(jù)上傳...
查快遞遇上AI客服2025年3月13日,新聞報(bào)道稱,近日,濟(jì)南市民張先生原本滿心期待著年前在網(wǎng)上購買的年貨,然而,時(shí)間一天天過去,快遞的蹤跡卻如同石沉大海,杳無音信。起初,張先生以為只是物流信息延遲,便耐心等待。但日子一天天過去,快遞依然沒有動(dòng)靜。他決定撥打快...
查快遞遇上AI客服2025年3月13日,新聞報(bào)道稱,近日,濟(jì)南市民張先生原本滿心期待著年前在網(wǎng)上購買的年貨,然而,時(shí)間一天天過去,快遞的蹤跡卻如同石沉大海,杳無音信。起初,張先生以為只是物流信息延遲,便耐心等待。但日子一天天過去,快遞依然沒有動(dòng)靜。他決定撥打快...
如圖1。在支持多渠道、多用戶的知識(shí)服務(wù)技術(shù)方面,根據(jù)多年的技術(shù)推廣經(jīng)驗(yàn)以及對多個(gè)行業(yè)的需求分析,我們設(shè)計(jì)一種可支撐不同用戶、不同渠道的統(tǒng)一的知識(shí)服務(wù)模式。該模式不僅融合了人工智能的研究成果和我們的**技術(shù),也融合了**、話務(wù)員、知識(shí)管理員等人工因素,是一種人機(jī)...
智能客服是依托自然語言處理(NLP)、深度學(xué)習(xí)與大規(guī)模知識(shí)處理技術(shù)構(gòu)建的自動(dòng)化服務(wù)系統(tǒng),具備24小時(shí)響應(yīng)能力和多任務(wù)并發(fā)處理能力 [1]。其**技術(shù)包括語義解析引擎、動(dòng)態(tài)知識(shí)庫管理和多模態(tài)交互設(shè)計(jì),在電商、金融、醫(yī)療等領(lǐng)域?qū)崿F(xiàn)自助應(yīng)答、智能導(dǎo)航與人機(jī)協(xié)作功能 ...
基礎(chǔ)科學(xué)大模型的快速發(fā)展開始于2020年。該年,AlphaFold2 [8]以圖網(wǎng)絡(luò)**蛋白質(zhì)折疊難題。2022年,華為盤古氣象大模型 [9]是較早精度超過傳統(tǒng)數(shù)值預(yù)報(bào)方法的AI模型,速度相比傳統(tǒng)數(shù)值預(yù)報(bào)提速10000倍以上。2023年DeepMind發(fā)布材料...
倫理對齊風(fēng)險(xiǎn):LLM的過度保守傾向可能扭曲投資決策,需通過倫理約束優(yōu)化模型對齊(歐陽樹淼等,2025)。3. 安全與合規(guī)挑戰(zhàn)01:34如何看待人工智能面臨的安全問題數(shù)據(jù)安全漏洞:LLM高度依賴敏感數(shù)據(jù),面臨多重安全風(fēng)險(xiǎn):○ 技術(shù)漏洞:定制化訓(xùn)練過程中,數(shù)據(jù)上傳...
支持多渠道接入,可支持電話、短信、MSN、QQ、飛信、BBS等渠道無縫接入支持面向CRM的數(shù)據(jù)深度挖掘分析。是幫助CFO寬心、放心、欣慰、得意的好產(chǎn)品,是CMO提出市場運(yùn)營策略的數(shù)據(jù)基石。性能指標(biāo)系統(tǒng)召回率達(dá)到:95%,準(zhǔn)確率達(dá)到:95%,產(chǎn)品穩(wěn)定性、兼容性、...
比較大壓縮率為5倍,采用GSM壓縮方式,錄音時(shí)間比無壓縮方式的錄音時(shí)間長五倍。例如,當(dāng)系統(tǒng)安裝了一個(gè) 20G 硬盤時(shí),錄音容量約 3400 小時(shí)。 可設(shè)定工作時(shí)段:為增加系統(tǒng)使用彈性,除選擇24小時(shí)錄音外,系統(tǒng)可在三個(gè)工作時(shí)段范圍工作,在非工作時(shí)段系統(tǒng)停止錄音...
隨后,記者又撥打了一家外賣行業(yè)的客服熱線,該平臺(tái)的AI客服首先會(huì)詢問用戶信息以確認(rèn)身份,隨后進(jìn)一步詢問訂單號及用戶想要反映的問題。當(dāng)記者再次試圖直接跳過提問要求轉(zhuǎn)人工時(shí),AI客服同樣堅(jiān)持提供幫助,并給出多個(gè)處理選項(xiàng),**終記者被引導(dǎo)至微信或APP在線客服。02...
基礎(chǔ)科學(xué)大模型的快速發(fā)展開始于2020年。該年,AlphaFold2 [8]以圖網(wǎng)絡(luò)**蛋白質(zhì)折疊難題。2022年,華為盤古氣象大模型 [9]是較早精度超過傳統(tǒng)數(shù)值預(yù)報(bào)方法的AI模型,速度相比傳統(tǒng)數(shù)值預(yù)報(bào)提速10000倍以上。2023年DeepMind發(fā)布材料...
查快遞遇上AI客服2025年3月13日,新聞報(bào)道稱,近日,濟(jì)南市民張先生原本滿心期待著年前在網(wǎng)上購買的年貨,然而,時(shí)間一天天過去,快遞的蹤跡卻如同石沉大海,杳無音信。起初,張先生以為只是物流信息延遲,便耐心等待。但日子一天天過去,快遞依然沒有動(dòng)靜。他決定撥打快...
2. 模型透明性與可信度挑戰(zhàn)“黑箱”特性:大模型的算法復(fù)雜性與可解釋性不足降低了高風(fēng)險(xiǎn)決策的透明度,可能引發(fā)監(jiān)管機(jī)構(gòu)與投資者的信任危機(jī)(Maple et al., 2022)。具體表現(xiàn)為:○ 決策不可控:訓(xùn)練數(shù)據(jù)中的錯(cuò)誤或誤導(dǎo)性信息可能生成低質(zhì)量結(jié)果,誤導(dǎo)金融...
查快遞遇上AI客服2025年3月13日,新聞報(bào)道稱,近日,濟(jì)南市民張先生原本滿心期待著年前在網(wǎng)上購買的年貨,然而,時(shí)間一天天過去,快遞的蹤跡卻如同石沉大海,杳無音信。起初,張先生以為只是物流信息延遲,便耐心等待。但日子一天天過去,快遞依然沒有動(dòng)靜。他決定撥打快...
“AI客服雖然快捷,但我認(rèn)為AI客服無法替代人工客服?!睆埾壬硎?,他希望未來的智能客服能夠在提升效率的同時(shí),更加注重人性化服務(wù),讓消費(fèi)者能夠真正感受到溫暖和關(guān)懷。 [4]記者撥打了包含快遞、旅游、支付等行業(yè)在內(nèi)的十余家**企業(yè)的客服熱線,測試時(shí)發(fā)現(xiàn)多數(shù)企業(yè)轉(zhuǎn)...
AI客服是指一種利用人工智能技術(shù),為客戶提供交互式服務(wù)的智能客服系統(tǒng)。這種系統(tǒng)通過自然語言處理技術(shù)、語音識(shí)別技術(shù)、機(jī)器學(xué)習(xí)技術(shù)等,能夠理解客戶的需求、回答客戶的問題、提供解決方案等。AI客服在處理簡單、重復(fù)的問題時(shí),效率高于人工客服,而且24小時(shí)隨時(shí)在線,節(jié)省...
人類對齊:為確保模型輸出符合人類期望和價(jià)值觀,通常采用基于人類反饋的強(qiáng)化學(xué)習(xí)(RLHF)方法。這一方法首先通過標(biāo)注人員對模型輸出進(jìn)行偏好排序訓(xùn)練獎(jiǎng)勵(lì)模型,然后利用強(qiáng)化學(xué)習(xí)優(yōu)化模型輸出。雖然RLHF的計(jì)算需求高于指令微調(diào),但總體上仍遠(yuǎn)低于預(yù)訓(xùn)練階段。信息檢索傳統(tǒng)...
大數(shù)據(jù)規(guī)模03:06通俗易懂理解AI大模型是怎么學(xué)習(xí)的 | 揭秘DeepSeek原理大模型依賴于大規(guī)模的數(shù)據(jù)訓(xùn)練。它們通常通過在海量數(shù)據(jù)上進(jìn)行學(xué)習(xí),捕捉復(fù)雜的模式和規(guī)律,展現(xiàn)出強(qiáng)大的推理和生成能力。訓(xùn)練數(shù)據(jù)的多樣性使得大模型能夠處理各種不同類型的數(shù)據(jù),如文本、...
2025年4月,張洪忠表示研究顯示,目前國內(nèi)主流媒體已經(jīng)將大模型技術(shù)應(yīng)用在內(nèi)容生產(chǎn)的全鏈條之中,技術(shù)的采納程度比較高。在使用水平和工作績效上,縣級媒體、市州級媒體、省級媒體、**級媒體呈現(xiàn)逐級遞增的特點(diǎn)??傮w上,媒體從業(yè)者對大模型技術(shù)抱持積極的態(tài)度,技術(shù)的接受...
多角度可配置的統(tǒng)計(jì)分析智能監(jiān)控系統(tǒng)截圖我們設(shè)計(jì)的統(tǒng)計(jì)分析系統(tǒng)是一種統(tǒng)一的系統(tǒng),可以監(jiān)控不同的地區(qū)、渠道、品牌、業(yè)務(wù)、時(shí)間、話務(wù)員、客戶類型等9個(gè)基本維度,同時(shí)也可以將上述基本維度進(jìn)行復(fù)合,形成復(fù)合型監(jiān)控維度,極大地?cái)U(kuò)展了現(xiàn)有監(jiān)控技術(shù)。人工輔助在系統(tǒng)不能自動(dòng)回復(fù)...
三 、流程編輯用戶可以根據(jù)系統(tǒng)提供的控件任意組合,方便、快捷地生成所需要的業(yè)務(wù)。對業(yè)務(wù)應(yīng)用系統(tǒng)的訪問,通過系統(tǒng)提供的外部服務(wù)控件可以方便地實(shí)現(xiàn)。不同業(yè)務(wù)流程之間可以相互轉(zhuǎn)移。利用業(yè)務(wù)生成系統(tǒng),可在短的時(shí)間內(nèi)生成大量的自動(dòng)語音處理流程。如與交換數(shù)據(jù)庫進(jìn)行數(shù)據(jù)傳遞...
大模型起源于語言模型。上世紀(jì)末,IBM的對齊模型 [1]開創(chuàng)了統(tǒng)計(jì)語言建模的先河。2001年,在3億個(gè)詞語上訓(xùn)練的基于平滑的n-gram模型達(dá)到了當(dāng)時(shí)的先進(jìn)水平 [2]。此后,隨著互聯(lián)網(wǎng)的普及,研究人員開始構(gòu)建大規(guī)模的網(wǎng)絡(luò)語料庫,用于訓(xùn)練統(tǒng)計(jì)語言模型。到了20...
大數(shù)據(jù)規(guī)模03:06通俗易懂理解AI大模型是怎么學(xué)習(xí)的 | 揭秘DeepSeek原理大模型依賴于大規(guī)模的數(shù)據(jù)訓(xùn)練。它們通常通過在海量數(shù)據(jù)上進(jìn)行學(xué)習(xí),捕捉復(fù)雜的模式和規(guī)律,展現(xiàn)出強(qiáng)大的推理和生成能力。訓(xùn)練數(shù)據(jù)的多樣性使得大模型能夠處理各種不同類型的數(shù)據(jù),如文本、...
2025年1月,DeepSeek發(fā)布671億參數(shù)的開源模型DeepSeek R1 [5]。DeepSeek R1的性能與OpenAI 的GPT-o1相當(dāng),但成本遠(yuǎn)遠(yuǎn)低于閉源的o1模型,震撼了全球科技界。自2020年以來,大模型同時(shí)開始拓展至其他模態(tài)。2020年...
客戶可按自己的意愿選擇自動(dòng)語音播報(bào)及人工座席應(yīng)答;對于新客戶可以選擇自動(dòng)語音播報(bào),了解服務(wù)中心的業(yè)務(wù)情況、如需人工幫助可轉(zhuǎn)入相關(guān)人工座席。二、智能話務(wù)分配(ACD)自動(dòng)呼叫分配系統(tǒng)(ACD)是客戶服務(wù)中心有別于一般的熱線電話系統(tǒng)的重要部分,在一個(gè)客戶服務(wù)中心中...
人類對齊:為確保模型輸出符合人類期望和價(jià)值觀,通常采用基于人類反饋的強(qiáng)化學(xué)習(xí)(RLHF)方法。這一方法首先通過標(biāo)注人員對模型輸出進(jìn)行偏好排序訓(xùn)練獎(jiǎng)勵(lì)模型,然后利用強(qiáng)化學(xué)習(xí)優(yōu)化模型輸出。雖然RLHF的計(jì)算需求高于指令微調(diào),但總體上仍遠(yuǎn)低于預(yù)訓(xùn)練階段。信息檢索傳統(tǒng)...