當激光光束焦點的位置在鏡面上,此時被反射的激光在無限空間中成為準直光束,并在OBJ2的焦平面上形成了一個激光光斑。同理,如果橫向掃描光束,則會形成遠離傾斜鏡鏡面的焦點,這又導致返回的光束會聚或發(fā)散,進而OBJ2能在軸向不同位置形成焦點,通過這種方式即能實現(xiàn)連續(xù)的軸向掃描。對于較小的傾斜角,聚焦沒有球差。該組在實驗中表征了這種將橫向掃描轉換為軸向掃描技術的光學性能,并使用它將光片顯微鏡的成像速度提升了一個數(shù)量級,從而可以在三個維度上量化快速的囊泡動力學。該組還演示了使用雙光子光柵掃描顯微鏡以12kHz進行共振遠程聚焦,該技術可對大腦組織和斑馬魚心臟動力學進行快速成像,并具有衍射極限的分辨率。顯微...
現(xiàn)代分子生物學技術的迅速發(fā)展和科技的進步,特別是隨著后基因組時代的到來,人們已經(jīng)能夠根據(jù)需要建立各種細胞模型,為在體研究基因表達規(guī)律、分子間的相互作用、細胞的增殖、細胞信號轉導、誘導分化、細胞凋亡以及新的血管生成等提供了良好的生物學條件。然而,盡管人們利用現(xiàn)有的分子生物學方法,已經(jīng)對基因表達和蛋白質(zhì)之間的相互作用進行了深入、細致的研究,但仍然不能實現(xiàn)對蛋白質(zhì)和基因活動的實時、動態(tài)監(jiān)測。在細胞的生理過程中,基因、尤其是蛋白質(zhì)的表達、修飾和相萬作用往往發(fā)生可逆的、動態(tài)的變化。目前的分子生物學方法還不能捕獲到蛋白質(zhì)和基因的這些變化,但獲取這些信息對與研究基因的表達和蛋白質(zhì)之間的相互作用又至關重要。因...
隨著現(xiàn)代分子生物學技術的快速發(fā)展和科學技術的進步,特別是后基因組時代的到來,人們已經(jīng)能夠根據(jù)需要建立各種細胞模型,這為在體內(nèi)研究基因表達、分子間相互作用、細胞增殖、細胞信號轉導、誘導分化、細胞凋亡和新生血管生成提供了良好的生物學條件。然而,盡管利用現(xiàn)有的分子生物學方法對基因表達與蛋白質(zhì)的相互作用進行了深入細致的研究,但仍然無法實現(xiàn)對蛋白質(zhì)和基因活性的實時動態(tài)監(jiān)測。在細胞的生理過程中,基因尤其是蛋白質(zhì)的表達、修飾和相互作用往往是可逆的、動態(tài)變化的。目前,分子生物學方法無法捕捉到蛋白質(zhì)和基因的這些變化,但獲得這些信息對于研究基因表達與蛋白質(zhì)的相互作用非常重要。因此,有必要發(fā)展一種動態(tài)、實時、連續(xù)監(jiān)...
細胞在受到外界刺激時,隨著刺激時間的增長,即使刺激繼續(xù)存在,Ca2+熒光信號不但不會繼續(xù)增強,反而會減弱,直至恢復到未加刺激物時的水平。對于細胞受精過程中Ca2+熒光信號的變化情況,研究發(fā)現(xiàn),配了在粘著過程中,Ca2+熒光信號未發(fā)生任何變化,而配子之間發(fā)生融合作用時,Ca2+熒光信號強度卻會出現(xiàn)一個不穩(wěn)定的峰值,并可持續(xù)幾分鐘。這些現(xiàn)象,對研究受精發(fā)育的早期信號及Ca2+在卵細胞和受精卵的發(fā)育過程中的作用具有重要的意義。在其它一些生理過程如細胞分裂、胞吐作用等等,Ca2+熒光信號強度也會發(fā)生很強的變化。全球多光子顯微鏡主要消費地區(qū)分析,包括消費量及份額等。美國在體多光子顯微鏡層析成像多光子激光...
與傳統(tǒng)的單光子寬視野熒光顯微鏡相比,多光子顯微鏡具有光學切片和深層成像等功能,這兩個優(yōu)勢極大地促進了研究者們對于完整大腦深處神經(jīng)的了解與認識。2019年,JeromeLecoq等人從大腦深處的神經(jīng)元成像、大量神經(jīng)元成像、高速神經(jīng)元成像這三個方面論述了相關的MPM技術。想要將神經(jīng)元活動與復雜行為聯(lián)系起來,通常需要對大腦皮質(zhì)深層的神經(jīng)元進行成像,這就要求MPM具有深層成像的能力。激發(fā)和發(fā)射光會被生物組織高度散射和吸收是限制MPM成像深度的主要因素,雖然可以通過增加激光強度來解決散射問題,但這會帶來其他問題,例如燒壞樣品、離焦和近表面熒光激發(fā)。增加MPM成像深度比較好的方法是用更長的波長作為激發(fā)光。...
多光子成像系統(tǒng)提供的優(yōu)勢包括了真正的三維成像、對活組織內(nèi)部深處進行成像的能力以及消除平面外熒光的能力。使用這種方法進行成像,可以對斯托克斯位移非常短和/或效率非常低的熒光染料進行成像,甚至可以對樣品或組織中固有的熒光分子進行成像。多光子成像的缺點包括需要高峰值功率脈沖激光器,例如鎖模鈦:藍寶石激光器,并且直到現(xiàn)在,缺乏在整個發(fā)射范圍內(nèi)提供足夠吞吐量的高性能濾光片。整個激光調(diào)諧范圍內(nèi)的興趣和足夠的阻擋。利用多光子顯微鏡,進行無損、高分辨率的生物組織層析成像。美國離體多光子顯微鏡實驗在生物成像中,我司多光子顯微鏡具有清晰,快速,深層,活這四個方面。結合了多光子上轉化材料以及時間編碼的結構光超分辨技...
雙光子顯微鏡工作原理是將超快的紅外激光脈沖傳輸?shù)綐悠分?,在樣品中與組織或熒光標記相互作用,這些組織或熒光標記發(fā)出用于創(chuàng)建圖像的信號。雙光子顯微鏡被多用于生物學研究,因為它能夠產(chǎn)生高分辨率的3-D圖像,深度達1毫米。然而,這些優(yōu)點帶來了有限的成像速度,因為微光條件需要逐點圖像采集和重建的點檢測器。為了加快成像速度,科學家之前開發(fā)了一種多焦點激光照明方法,該方法使用數(shù)字微鏡設備(DMD),這是一種通常用于投影儀的低成本光掃描儀。此前人們認為這些DMD不能與超快激光一起工作。然而現(xiàn)在解決了這個問題,這使得DMD在超快激光應用中得以應用,這些應用包括光束整形、脈沖整形、快速掃描和雙光子成像。DMD在樣...
國內(nèi)顯微鏡制造市場目前斷層嚴重。目前我國顯微鏡行業(yè)發(fā)展缺乏技術沉淀,20年以上經(jīng)營積累的企業(yè)十分稀缺,深度精密制造、光學主要部件設計及工藝嚴重制約產(chǎn)業(yè)升級。目前中國顯微鏡中如多光子顯微鏡、共聚焦掃描和電子顯微鏡等主要集中在徠卡顯微系統(tǒng)、蔡司、尼康、奧林巴斯等國外企業(yè)。國內(nèi)具備生產(chǎn)顯微鏡能力的企業(yè)屈指可數(shù),若國內(nèi)顯微鏡企業(yè)能打破技術壁壘,切入顯微鏡市場,企業(yè)的生產(chǎn)經(jīng)營將騰躍至一個更高的格局。未來國產(chǎn)多光子激光掃描顯微鏡替代空間大。目前中國使用的多光子激光掃描顯微鏡幾乎被徠卡顯微系統(tǒng)、蔡司、尼康和奧林巴斯壟斷。國內(nèi)有能力開始生產(chǎn)多光子激光掃描顯微鏡的企業(yè)極少,若國內(nèi)能夠制造出高性能、高可靠性的多光...
作為一個多學科、知識密集型和資金密集型的高科技產(chǎn)業(yè),多光子顯微鏡涉及醫(yī)學、生物學、化學、物理學、電子學、工程學等多個學科。其生產(chǎn)工藝相對復雜,進入門檻較高。它是衡量一個國家制造業(yè)和高科技發(fā)展水平的重要標準之一。在過去的五年里,多光子顯微鏡的市場是集中的。由于投產(chǎn)成本高,技術難度大,目前涌現(xiàn)的新企業(yè)并不多。顯微鏡作為傳統(tǒng)的高科技產(chǎn)業(yè),并沒有被其他技術顛覆,而是一直在不斷融合發(fā)展相關技術,在醫(yī)療等精密檢測領域發(fā)揮更大的作用。顯微鏡的商業(yè)化發(fā)展已進入成熟階段,主要需求來自教學、生命科學研究和精密測試等。全球市場呈現(xiàn)溫和增長趨勢。而顯微鏡產(chǎn)品(如多光子顯微鏡、電子顯微鏡)正在刺激市場需求,多光子顯微鏡...
比較兩表格中的相關參數(shù)可以看出,基于分子光學標記的成像技術已經(jīng)在生物活檢和基因表達規(guī)律方面展示了較大的優(yōu)勢。例如,正電子發(fā)射斷層成像(PET)可實現(xiàn)對分子代謝的成像,空間分辨率∶1-2mm,時間分辨率;分鐘量級。與PET比較,光學成像的應用場合更廣(可測量更多的參數(shù),請參見表1-1),且具有更高的時間分辨率(秒級),空間分辨率可達到微米。因此,二者相比,雖然光學成像在測量深度方面不及PET,但在測量參數(shù)種類與時空分辨率方面有一定優(yōu)勢。對于小動物(如小白鼠)研究來說,光學成像技術可以實現(xiàn)小動物整體成像和在體基因表達成像。例如,初步研究表明,熒光介導層析成像可達到近10cm的測量深度;基于多光子激...
與傳統(tǒng)的單光子寬視野熒光顯微鏡相比,多光子顯微鏡(MPM)具有光學切片和深層成像等功能,這兩個優(yōu)勢極大地促進了研究者們對于完整大腦深處神經(jīng)的了解與認識。2019年,JeromeLecoq等人從大腦深處的神經(jīng)元成像、大量神經(jīng)元成像、高速神經(jīng)元成像這三個方面論述了相關的MPM技術。想要將神經(jīng)元活動與復雜行為聯(lián)系起來,通常需要對大腦皮質(zhì)深層的神經(jīng)元進行成像,這就要求MPM具有深層成像的能力。激發(fā)和發(fā)射光會被生物組織高度散射和吸收是限制MPM成像深度的主要因素,雖然可以通過增加激光強度來解決散射問題,但這會帶來其他問題,例如燒壞樣品、離焦和近表面熒光激發(fā)。增加MPM成像深度比較好的方法是用更長的波長作...
從產(chǎn)品類型及技術方面來看,正置顯微鏡占據(jù)絕大多數(shù)市場。2020年,全球多光子激光掃描正置顯微鏡市場達到87.30百萬美元,預計到2027年該部分市場將達到154.02百萬美元,年復合增長率(2021-2027)為8.48%。中國多光子激光掃描正置顯微鏡市場達到13.32百萬美元,預計到2027年該部分市場將達到25.21百萬美元,年復合增長率(2021-2027)為9.58%。從產(chǎn)品市場應用情況來看,研究機構為主要應用領域,2020年約占全球市場46.28%。2020年,全球多光子激光掃描顯微鏡研究機構應用消費量為174臺,預計2027年達到349臺,2021-2027年復合增長率(CAGR)...
雙光子熒光顯微成像主要有以下優(yōu)點∶a.光損傷小∶雙光子熒光顯微鏡使用可見光或近紅外光作為激發(fā)光,對細胞和組織的光損傷很小,適合于長時間的研究;b.穿透能力強∶相對于紫外光,可見光或近紅外光具有很強的穿透性,可以對生物樣品進行深層次的研究;c.高分辨率∶由于雙光子吸收截面很小P,只有在焦平面很小的區(qū)域內(nèi)可以激發(fā)出熒光,雙光子吸收局限于焦點處的體積約為λ范圍內(nèi);d.漂白區(qū)域很小,焦點以外不發(fā)生漂白現(xiàn)象。e.熒光收集率高。與共聚焦成像相比,雙光子成像不需要光學濾波器,提高了熒光收集率。收集效率提高直接導致圖像對比度提高。f.對探測光路的要求低。由于激發(fā)光與發(fā)射熒光的波長差值加大以及自發(fā)的三維濾波效果...
2020年,TonmoyChakraborty等人提出了一種加快2PM軸向掃描速度的方法[2]。在光學顯微鏡中,物鏡或樣品的緩慢軸向掃描速度限制了體積成像的速度。近年來,通過使用遠程聚焦技術或電可調(diào)諧透鏡(ETL)已經(jīng)實現(xiàn)了快速軸向掃描;但是,遠程聚焦中反射鏡的機械驅(qū)動會限制軸向掃描速度,ETL會引入球面像差和更高階像差,從而無法進行高分辨率成像。為了克服這些局限性,該組引入了一種新穎的光學設計,能將橫向掃描轉換為可用于高分辨率成像的無球差的軸向掃描。該設計有兩種實現(xiàn)方式,第一種能夠執(zhí)行離散的軸向掃描,另一種能夠進行連續(xù)的軸向掃描。具體裝置如圖3a所示,由兩個垂直臂組成,每個臂中都有一個4F望...
現(xiàn)代分子生物學技術的迅速發(fā)展和科技的進步,特別是隨著后基因組時代的到來,人們已經(jīng)能夠根據(jù)需要建立各種細胞模型,為在體研究基因表達規(guī)律、分子間的相互作用、細胞的增殖、細胞信號轉導、誘導分化、細胞凋亡以及新的血管生成等提供了良好的生物學條件。然而,盡管人們利用現(xiàn)有的分子生物學方法,已經(jīng)對基因表達和蛋白質(zhì)之間的相互作用進行了深入、細致的研究,但仍然不能實現(xiàn)對蛋白質(zhì)和基因活動的實時、動態(tài)監(jiān)測。在細胞的生理過程中,基因、尤其是蛋白質(zhì)的表達、修飾和相萬作用往往發(fā)生可逆的、動態(tài)的變化。目前的分子生物學方法還不能捕獲到蛋白質(zhì)和基因的這些變化,但獲取這些信息對與研究基因的表達和蛋白質(zhì)之間的相互作用又至關重要。因...
與傳統(tǒng)的單光子寬視野熒光顯微鏡相比,多光子顯微鏡(MPM)具有光學切片和深層成像等功能,這兩個優(yōu)勢極大地促進了研究者們對于完整大腦深處神經(jīng)的了解與認識。2019年,JeromeLecoq等人從大腦深處的神經(jīng)元成像、大量神經(jīng)元成像、高速神經(jīng)元成像這三個方面論述了相關的MPM技術。想要將神經(jīng)元活動與復雜行為聯(lián)系起來,通常需要對大腦皮質(zhì)深層的神經(jīng)元進行成像,這就要求MPM具有深層成像的能力。激發(fā)和發(fā)射光會被生物組織高度散射和吸收是限制MPM成像深度的主要因素,雖然可以通過增加激光強度來解決散射問題,但這會帶來其他問題,例如燒壞樣品、離焦和近表面熒光激發(fā)。增加MPM成像深度比較好的方法是用更長的波長作...
多光子顯微鏡通過引入具有超高透射率、非常陡峭的邊緣和精心優(yōu)化的阻擋的濾光片,為多光子用戶帶來了增強的性能??紤]到激發(fā)激光器和多光子成像系統(tǒng)的其他復雜元件通常需要多少投資,這些新的光學濾光片**了一種簡單且廉價的升級,可以顯著提高系統(tǒng)性能。事實上,與傳統(tǒng)濾光片的褐**調(diào)相比,發(fā)射濾光片看起來像窗戶玻璃一樣清晰,而且LWP二向色鏡具有如此寬的反射帶,它們看起來像高反射鏡。發(fā)射濾光片還在Ti:Sapphire激光調(diào)諧范圍內(nèi)提供深度阻擋,這對于實現(xiàn)高信噪比和測量靈敏度至關重要。高效激發(fā),長波長照射,多光子顯微鏡提升樣品存活率。美國全自動多光子顯微鏡代理商多光子激光掃描顯微鏡行業(yè)發(fā)展,世界多光子激光掃描...
SternandJeanMarx在評論中說:祖家能夠在更為精細的層次研究樹突的功能,這在以前是完全不可能的。新的技術(如腦片的膜片鉗和雙光子顯微使人們對樹突的計算和神經(jīng)信號處理中的作用有了更好的理解。他們解釋了是樹突模式和形狀多樣性,及其獨特的電、及其獨特的電化學特征使神經(jīng)元完成了一系列的專門任務。雙光子與共聚焦在發(fā)育生物學中的應用雙光子∶每2.5分鐘掃描一次,觀察24小時,發(fā)育到桑椹胚和胚泡階段共聚焦∶每15分鐘掃描一次,觀察8小時后細胞分裂停止,不能發(fā)育到桑椹胚和胚泡階段共聚焦激發(fā)時的細胞存活率為多光子系統(tǒng)的10~20%。目前中國顯微鏡中如多光子顯微鏡、共聚焦掃描和電子顯微鏡等。飛秒激光多...
根據(jù)阿貝成像原理,許多光學成像系統(tǒng)是一個低通濾波器,物平面包含從低頻到高頻的信息,透鏡口徑會限制高頻信息通過,只允許一定的低頻通過,因此丟失了高頻信息會使成像所得圖像的細節(jié)變模糊,降低分辨率。對于三維成像來說,寬場照明時得到的信息不僅包含物鏡焦平面上樣品的部分信息,同時還包含焦平面外的樣品信息。由于受到焦平面外的信息干擾,常規(guī)熒光顯微鏡無法獲得層析圖像。三維結構光照明顯微鏡能夠提高分辨率、獲得層析圖像,是因為利用特定結構的照明光能引入樣品的高頻信息,當結構光的空間頻率足夠高時,只有靠近焦面的部分才能被結構光調(diào)制,超出這一區(qū)域,逐漸轉變?yōu)榫鶆蛘彰鳎簿褪侵挥薪姑娓浇挠邢迏^(qū)域具有相對完整的頻譜信...
多光子激光掃描顯微鏡的產(chǎn)業(yè)發(fā)展,世界多光子激光掃描顯微鏡產(chǎn)業(yè)主要分布在德國和日本,德國以徠卡顯微系統(tǒng)和蔡司為基礎,日本以尼康和奧林巴斯為基礎。2020年以來,這些企業(yè)占據(jù)了全球多光子激光掃描顯微鏡市場的64.44%,它們的發(fā)展策略影響著多光子激光掃描顯微鏡市場的走向。目前,世界市場對多光子激光掃描顯微鏡的需求正在增長,中國市場的需求增長更快。未來五年多光子激光掃描顯微鏡市場的發(fā)展在中國將仍有巨大的發(fā)展?jié)摿?。由于光的波長有限,光子顯微鏡的分辨率受到限制,無法觀察到更小的結構和細胞器。共聚焦多光子顯微鏡準確定位對于雙光子成像而言,離焦和近表面熒光激發(fā)是兩個比較大的深度限制因素,而對于三光子(3P)...
神經(jīng)科學重要的研究工具-多光子顯微鏡作為神經(jīng)科學重要的研究工具,近年來發(fā)展快速,品牌也眾多。我們通常都是在一間開著冷氣的房間里的超大防震臺上見過這樣一套設備。臺面上復雜的光路也讓我們在使用中小心翼翼,生怕弄壞了哪里而無從修復。你是否想象過一臺放在書桌邊上就能使用的多光子顯微鏡,一臺跟普通顯微鏡一樣操作簡便的多光子顯微鏡,一臺不用擔心會碰壞的多光子顯微鏡,一臺可以在不同實驗室之間搬來搬去的多光子顯微鏡,一臺可以從任意角度進行觀察掃描的多光子顯微鏡?滔博生物TOP-Bright是一家集研發(fā),生產(chǎn),銷售于一體的專注于神經(jīng)科學產(chǎn)品及致力于向高校、科研機構等領域提供實驗室一體化方案的高科技企業(yè)。業(yè)務服務...
多光子激光掃描顯微鏡的產(chǎn)業(yè)發(fā)展,世界多光子激光掃描顯微鏡產(chǎn)業(yè)主要分布在德國和日本,德國以徠卡顯微系統(tǒng)和蔡司為基礎,日本以尼康和奧林巴斯為基礎。2020年以來,這些企業(yè)占據(jù)了全球多光子激光掃描顯微鏡市場的64.44%,它們的發(fā)展策略影響著多光子激光掃描顯微鏡市場的走向。目前,世界市場對多光子激光掃描顯微鏡的需求正在增長,中國市場的需求增長更快。未來五年多光子激光掃描顯微鏡市場的發(fā)展在中國將仍有巨大的發(fā)展?jié)摿Α6喙庾语@微鏡適用于動物大腦皮層深層(400微米)細胞的形態(tài)、生理學研究。美國靈長類多光子顯微鏡能量脈沖當激光光束焦點的位置在鏡面上,此時被反射的激光在無限空間中成為準直光束,并在OBJ2的焦...
隨著生物分子光學標記技術的不斷進步,光學技術在揭示生命活動基本規(guī)律的研究中正發(fā)揮越來越重要的作用,也為醫(yī)學診療提供了更多、更有效的手段。生物醫(yī)學光學是近年來受到國際光學界和生物醫(yī)學界關注的研究熱點,在生物活檢、光動力、細胞結構與功能檢測、基因表達規(guī)律的在體研究等問題上取得了一系列研究成果,目前正在從宏觀到微觀上對大腦活動與功能進行多層面的研究。細胞重大生命活動(包括細胞增殖、分化、凋亡及信號轉導)的發(fā)生和調(diào)節(jié)是通過生物大分子間(如蛋白質(zhì)-蛋白質(zhì)、蛋白質(zhì)-核酸等)相互作用來實現(xiàn)的。蛋白質(zhì)作為基因調(diào)控的產(chǎn)物,與細胞和機體生理過程代謝直接相關,深入研究基因表達及蛋白質(zhì)-蛋白質(zhì)相互作用不僅能揭示生命活...
多光子顯微鏡因擁有較深的成像深度,和較高的對比度在生物成像中有著重要的意義,但是它通常需要較高的功率。結合時間上展開的超短脈沖可以實現(xiàn)超快的掃描速度和較深的成像深度,但是其本身所利用的近紅外波段的光會導致分辨率較低。清華大學陳宏偉教授和北京大學席鵬研究員合作研究,結合了結構光成像和上轉化粒子,開發(fā)了一種基于多光子上轉化材料和時間編碼結構光顯微鏡的高速超分辨成像系統(tǒng)(MUTE-SIM)。它可以實現(xiàn)50MHz的超高的掃描速度,并突破了衍射極限,實現(xiàn)了超分辨成像。相較于普通的熒光顯微鏡,該顯微鏡提升了,并且只需要較低的激發(fā)功率。這種超快、低功率、多光子的超分辨技術,在分辨率高的生物深層組織成像上有著...
2020年,TonmoyChakraborty等人提出了加速2PM軸向掃描速度的方法[2]。在光學顯微鏡中,物鏡或樣品緩慢的軸向掃描速度限制了體成像的速度。近年來,通過使用遠程聚焦技術或電調(diào)諧透鏡(ETL)已經(jīng)實現(xiàn)了快速軸向掃描。但遠程對焦時對反射鏡的機械驅(qū)動會限制軸向掃描速度,ETL會引入球差和高階像差,無法進行高分辨率成像。為了克服這些限制,該小組引入了一種新的光學設計,可以將橫向掃描轉換為無球面像差的軸向掃描,以實現(xiàn)高分辨率成像。有兩種方法可以實現(xiàn)這種設計。***個可以執(zhí)行離散的軸向掃描,另一個可以執(zhí)行連續(xù)的軸向掃描。如圖3a所示,特定裝置由兩個垂直臂組成,每個臂具有4F望遠鏡和物鏡。遠...
Ca2+是重要的第二信使,對于調(diào)節(jié)細胞的生理反應具有極其重要的作用,開發(fā)和利用雙光子熒光顯微成像技術對Ca2+熒光信號進行觀測,可以從某些方面對有機體或細胞的變化機制進行分析,具有重要的意義。利用雙光子熒光顯微成像技術可以觀察細胞內(nèi)用熒光探針標記的Ca2*的時間和空間的熒光圖像的變化,還可以觀察細胞某一層面或局部的(Ca2+)熒光圖像和變化。通過對單細胞的研究發(fā)現(xiàn),Ca2+不僅在細胞局部區(qū)域間的分布是不均勻的,而且細胞內(nèi)各局部區(qū)域的不同深度或?qū)哟伍g也存在不同程度的Ca2+梯差即所謂的空間Ca2梯差。全球多光子顯微鏡主要生產(chǎn)地區(qū)分析,包括產(chǎn)量、產(chǎn)值份額等。進口多光子顯微鏡技術從產(chǎn)品類型及技術方面...
多束掃描技術可以同時對神經(jīng)元組織的不同位置進行成像對兩個遠距離(相距大于1-2mm)的成像部位,通常使用兩條單獨的路徑進行成像;對于相鄰區(qū)域,通常使用單個物鏡的多光束進行成像。多光束掃描技術必須特別注意激發(fā)光束之間的串擾問題,這個問題可以通過事后光源分離方法或時空復用方法來解決。事后光源分離方法指的是用算法來分離光束消除串擾;時空復用方法指的是同時使用多個激發(fā)光束,每個光束的脈沖在時間上延遲,這樣就可以暫時分離被不同光束激發(fā)的單個熒光信號。引入越多路光束就可以對越多的神經(jīng)元進行成像,但是多路光束會導致熒光衰減時間的重疊增加,從而限制了區(qū)分信號源的能力;并且多路復用對電子設備的工作速率有很高的要...
作為一個多學科交叉、知識密集、資金密集的高技術產(chǎn)業(yè),多光子顯微鏡涉及醫(yī)學、生物學、化學、物理學、電子學、工程學等學科,生產(chǎn)工藝相對復雜,進入門檻較高,是衡量一個國家制造業(yè)和高科技發(fā)展水平的重要標準之一。過去的5年,多光子顯微鏡市場集中,由于投產(chǎn)生產(chǎn)的成本較高,技術難度大,目前涌現(xiàn)的新企業(yè)不多。顯微鏡作為一個傳統(tǒng)的高科技行業(yè),其作用至今沒有被其他技術顛覆,只是不斷融合并發(fā)展相關技術,在醫(yī)療和其他精密檢測領域發(fā)揮著更大的作用。顯微鏡的商業(yè)化發(fā)展已進入成熟期,主要需求來自教學、生命科學的研究及精密檢測等,全球市場呈現(xiàn)平緩的增長態(tài)勢。然而,顯微鏡產(chǎn)品(如多光子顯微鏡、電子顯微鏡)正拉動市場需求,多光子...
比較兩表格中的相關參數(shù)可以看出,基于分子光學標記的成像技術已經(jīng)在生物活檢和基因表達規(guī)律方面展示了較大的優(yōu)勢。例如,正電子發(fā)射斷層成像(PET)可實現(xiàn)對分子代謝的成像,空間分辨率∶1-2mm,時間分辨率;分鐘量級。與PET比較,光學成像的應用場合更廣(可測量更多的參數(shù),請參見表1-1),且具有更高的時間分辨率(秒級),空間分辨率可達到微米。因此,二者相比,雖然光學成像在測量深度方面不及PET,但在測量參數(shù)種類與時空分辨率方面有一定優(yōu)勢。對于小動物(如小白鼠)研究來說,光學成像技術可以實現(xiàn)小動物整體成像和在體基因表達成像。例如,初步研究表明,熒光介導層析成像可達到近10cm的測量深度;基于多光子激...
根據(jù)阿貝成像原理,許多光學成像系統(tǒng)是一個低通濾波器,物平面包含從低頻到高頻的信息,透鏡口徑會限制高頻信息通過,只允許一定的低頻通過,因此丟失了高頻信息會使成像所得圖像的細節(jié)變模糊,降低分辨率。對于三維成像來說,寬場照明時得到的信息不僅包含物鏡焦平面上樣品的部分信息,同時還包含焦平面外的樣品信息。由于受到焦平面外的信息干擾,常規(guī)熒光顯微鏡無法獲得層析圖像。三維結構光照明顯微鏡能夠提高分辨率、獲得層析圖像,是因為利用特定結構的照明光能引入樣品的高頻信息,當結構光的空間頻率足夠高時,只有靠近焦面的部分才能被結構光調(diào)制,超出這一區(qū)域,逐漸轉變?yōu)榫鶆蛘彰?,也就是只有焦面附近的有限區(qū)域具有相對完整的頻譜信...