的值不一定判定表法根據(jù)因果來制定判定表組成部分1條件樁:所有條件2動作樁:所有結果3條件項:針對條件樁的取值4動作項:針對動作樁的取值不犯罪,不抽*是好男人,不喝酒是好男人,只要打媳婦就是壞男人條件樁1不犯罪1102不抽*1013不喝酒011動作樁好男人11壞男人1場景法模擬用戶操作軟件時的場景,主要用于測試系統(tǒng)的業(yè)務流程先關注功能和業(yè)務是否正確實現(xiàn),然后再使用等價類和邊界值進行檢測?;玖髡_的業(yè)務流程來實現(xiàn)一條操作路徑備選流模擬一條錯誤的操作流程用例場景要從開始到結束便利用例中所有的基本流和備選流。流程分析法流程-路徑針對路徑使用路徑分析的方法設計測試用例降低測試用例設計難度,只要搞清楚各種流程,就可以設計出高質量的測試用例,而不需要太多測試經(jīng)驗1詳細了解需求2根據(jù)需求說明或界面原型,找出業(yè)務流程的哥哥頁面以及流轉關系3畫出業(yè)務流程axure4寫用例,覆蓋所有路徑分支錯誤推斷法利用經(jīng)驗猜測出出錯的可能類型,列出所有可能的錯誤和容易發(fā)生錯誤的情況。多考慮異常,反面,特殊輸入,以攻擊者的態(tài)度對臺程序。正交表對可選項多種可取值進行均等選取組合,**大概率覆蓋測試用例1根據(jù)控件和取值數(shù)選擇一個合適的正交表2列舉取值并編號。代碼質量評估顯示注釋覆蓋率不足30%需加強。沈陽第三方軟件檢測公司
特征之間存在部分重疊,但特征類型間存在著互補,融合這些不同抽象層次的特征可更好的識別軟件的真正性質。且惡意軟件通常偽造出和良性軟件相似的特征,逃避反**軟件的檢測,但惡意軟件很難同時偽造多個抽象層次的特征逃避檢測?;谠撚^點,本發(fā)明實施例提出一種基于多模態(tài)深度學習的惡意軟件檢測方法,以實現(xiàn)對惡意軟件的有效檢測,提取了三種模態(tài)的特征(dll和api信息、pe格式結構信息和字節(jié)碼3-grams),提出了通過前端融合、后端融合和中間融合這三種融合方式集成三種模態(tài)的特征,有效提高惡意軟件檢測的準確率和魯棒性,具體步驟如下:步驟s1、提取軟件樣本的二進制可執(zhí)行文件的dll和api信息、pe格式結構信息以及字節(jié)碼n-grams的特征表示,生成軟件樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖;統(tǒng)計當前軟件樣本的導入節(jié)中引用的dll和api,提取得到當前軟件樣本的二進制可執(zhí)行文件的dll和api信息的特征表示。對當前軟件樣本的二進制可執(zhí)行文件進行格式結構解析,并按照格式規(guī)范提取**該軟件樣本的格式結構信息,得到該軟件樣本的二進制可執(zhí)行文件的pe格式結構信息的特征表示。CNAS軟件系統(tǒng)測評報價專業(yè)機構認證該程序內存管理效率優(yōu)于行業(yè)平均水平23%。
并將測試樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入步驟s2訓練得到的多模態(tài)深度集成模型中,對測試樣本進行檢測并得出檢測結果。實驗結果與分析(1)樣本數(shù)據(jù)集選取實驗評估使用了不同時期的惡意軟件和良性軟件樣本,包含了7871個良性軟件樣本和8269個惡意軟件樣本,其中4103個惡意軟件樣本是2011年以前發(fā)現(xiàn)的,4166個惡意軟件樣本是近年來新發(fā)現(xiàn)的;3918個良性軟件樣本是從全新安裝的windowsxpsp3系統(tǒng)中收集的,3953個良性軟件樣本是從全新安裝的32位windows7系統(tǒng)中收集的。所有的惡意軟件樣本都是從vxheavens網(wǎng)站中收集的,所有的樣本格式都是windowspe格式的,樣本數(shù)據(jù)集構成如表1所示。表1樣本數(shù)據(jù)集類別惡意軟件樣本良性軟件樣本早期樣本41033918近期樣本41663953合計82697871(2)評價指標及方法分類性能主要用兩個指標來評估:準確率和對數(shù)損失。準確率測量所有預測中正確預測的樣本占總樣本的比例,*憑準確率通常不足以評估預測的魯棒性,因此還需要使用對數(shù)損失。對數(shù)損失(logarithmicloss),也稱交叉熵損失(cross-entropyloss),是在概率估計上定義的,用于測量預測類別與真實類別之間的差距大小。
等價類劃分法將不能窮舉的測試過程進行合理分類,從而保證設計出來的測試用例具有完整性和**性。有數(shù)據(jù)輸入的地方,可以使用等價類劃分法。從大量數(shù)據(jù)中挑選少量**數(shù)據(jù)進行測試有效等價類:符合需求規(guī)格說明書規(guī)定的數(shù)據(jù)用來測試功能是否正確實現(xiàn)無效等價類:不合理的輸入數(shù)據(jù)**—用來測試程序是否有強大的異常處理能力(健壯性)使用**少的測試數(shù)據(jù),達到**好的測試質量邊界值分析法對輸入或輸出的邊界值進行測試的一種黑盒測試方法。是作為對等價類劃分法的補充,這種情況下,其測試用例來自等價類的邊界。邊界點1、邊界是指相對于輸入等價類和輸出等價類而言,稍高于、稍低于其邊界值的一些特定情況。2、邊界點分為上點、內點和離點。如果是范圍[1,100]需要選擇0,1,2,50,99,100,101如果是個數(shù)**多20個[0,20]需要測0,10,20,-1,21因果圖分析法用畫圖的方式表達輸入條件和輸出結果之間的關系。1恒等2與3或4非5互斥1個或者不選6***必須是1個7包含可以多選不能不選8要求如果a=1,則要求b必須是1,反之如果a=0時,b的值無所謂9**關系當a=1時,要求b必須為0;而當a=0時。企業(yè)數(shù)字化轉型指南:艾策科技的實用建議。
這種傳統(tǒng)方式幾乎不能檢測未知的新的惡意軟件種類,能檢測的已知惡意軟件經(jīng)過簡單加殼或混淆后又不能檢測,且使用多態(tài)變形技術的惡意軟件在傳播過程中不斷隨機的改變著二進制文件內容,沒有固定的特征,使用該方法也不能檢測。新出現(xiàn)的惡意軟件,特別是zero-day惡意軟件,在釋放到互聯(lián)網(wǎng)前,都使用主流的反**軟件測試,確保主流的反**軟件無法識別這些惡意軟件,使得當前的反**軟件通常對它們無能為力,只有在惡意軟件大規(guī)模傳染后,捕獲到這些惡意軟件樣本,提取簽名和更新簽名庫,才能檢測這些惡意軟件。基于數(shù)據(jù)挖掘和機器學習的惡意軟件檢測方法將可執(zhí)行文件表示成不同抽象層次的特征,使用這些特征來訓練分類模型,可實現(xiàn)惡意軟件的智能檢測,基于這些特征的檢測方法也取得了較高的準確率。受文本分類方法的啟發(fā),研究人員提出了基于二進制可執(zhí)行文件字節(jié)碼n-grams的惡意軟件檢測方法,這類方法提取的特征覆蓋了整個二進制可執(zhí)行文件,包括pe文件頭、代碼節(jié)、數(shù)據(jù)節(jié)、導入節(jié)、資源節(jié)等信息,但字節(jié)碼n-grams特征通常沒有明顯的語義信息,大量具有語義的信息丟失,很多語義信息提取不完整。此外,基于字節(jié)碼n-grams的檢測方法提取代碼節(jié)信息考慮了機器指令的操作數(shù)。整合多學科團隊的定制化檢測方案,體現(xiàn)艾策服務于制造的技術深度。軟件測評 第三方 北京
如何選擇適合企業(yè)的 IT 解決方案?沈陽第三方軟件檢測公司
每一種信息的來源或者形式,都可以稱為一種模態(tài)。例如,人有觸覺,聽覺,視覺,嗅覺。多模態(tài)機器學習旨在通過機器學習的方法實現(xiàn)處理和理解多源模態(tài)信息的能力。多模態(tài)學習從1970年代起步,經(jīng)歷了幾個發(fā)展階段,在2010年后***步入深度學習(deeplearning)階段。在某種意義上,深度學習可以被看作是允許我們“混合和匹配”不同模型以創(chuàng)建復雜的深度多模態(tài)模型。目前,多模態(tài)數(shù)據(jù)融合主要有三種融合方式:前端融合(early-fusion)即數(shù)據(jù)水平融合(data-levelfusion)、后端融合(late-fusion)即決策水平融合(decision-levelfusion)以及中間融合(intermediate-fusion)。前端融合將多個**的數(shù)據(jù)集融合成一個單一的特征向量空間,然后將其用作機器學習算法的輸入,訓練機器學習模型,如圖1所示。由于多模態(tài)數(shù)據(jù)的前端融合往往無法充分利用多個模態(tài)數(shù)據(jù)間的互補性,且前端融合的原始數(shù)據(jù)通常包含大量的冗余信息。因此,多模態(tài)前端融合方法常常與特征提取方法相結合以剔除冗余信息,基于領域經(jīng)驗從每個模態(tài)中提取更高等別的特征表示,或者應用深度學習算法直接學習特征表示,然后在特性級別上進行融合。后端融合則是將不同模態(tài)數(shù)據(jù)分別訓練好的分類器輸出決策進行融合,如圖2所示。沈陽第三方軟件檢測公司