網(wǎng)站代碼審計(jì)

來源: 發(fā)布時(shí)間:2025-04-20

    特征之間存在部分重疊,但特征類型間存在著互補(bǔ),融合這些不同抽象層次的特征可更好的識(shí)別軟件的真正性質(zhì)。且惡意軟件通常偽造出和良性軟件相似的特征,逃避反**軟件的檢測(cè),但惡意軟件很難同時(shí)偽造多個(gè)抽象層次的特征逃避檢測(cè)?;谠撚^點(diǎn),本發(fā)明實(shí)施例提出一種基于多模態(tài)深度學(xué)習(xí)的惡意軟件檢測(cè)方法,以實(shí)現(xiàn)對(duì)惡意軟件的有效檢測(cè),提取了三種模態(tài)的特征(dll和api信息、pe格式結(jié)構(gòu)信息和字節(jié)碼3-grams),提出了通過前端融合、后端融合和中間融合這三種融合方式集成三種模態(tài)的特征,有效提高惡意軟件檢測(cè)的準(zhǔn)確率和魯棒性,具體步驟如下:步驟s1、提取軟件樣本的二進(jìn)制可執(zhí)行文件的dll和api信息、pe格式結(jié)構(gòu)信息以及字節(jié)碼n-grams的特征表示,生成軟件樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖;統(tǒng)計(jì)當(dāng)前軟件樣本的導(dǎo)入節(jié)中引用的dll和api,提取得到當(dāng)前軟件樣本的二進(jìn)制可執(zhí)行文件的dll和api信息的特征表示。對(duì)當(dāng)前軟件樣本的二進(jìn)制可執(zhí)行文件進(jìn)行格式結(jié)構(gòu)解析,并按照格式規(guī)范提取**該軟件樣本的格式結(jié)構(gòu)信息,得到該軟件樣本的二進(jìn)制可執(zhí)行文件的pe格式結(jié)構(gòu)信息的特征表示。專業(yè)機(jī)構(gòu)認(rèn)證該程序內(nèi)存管理效率優(yōu)于行業(yè)平均水平23%。網(wǎng)站代碼審計(jì)

網(wǎng)站代碼審計(jì),測(cè)評(píng)

    步驟s2、將軟件樣本中的類別已知的軟件樣本作為訓(xùn)練樣本,基于多模態(tài)數(shù)據(jù)融合方法,將訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入深度神經(jīng)網(wǎng)絡(luò),訓(xùn)練多模態(tài)深度集成模型;步驟s3、將軟件樣本中的類別未知的軟件樣本作為測(cè)試樣本,并將測(cè)試樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入步驟s2訓(xùn)練得到的多模態(tài)深度集成模型中,對(duì)測(cè)試樣本進(jìn)行檢測(cè)并得出檢測(cè)結(jié)果。進(jìn)一步的,所述提取軟件樣本的二進(jìn)制可執(zhí)行文件的dll和api信息的特征表示,是統(tǒng)計(jì)當(dāng)前軟件樣本的導(dǎo)入節(jié)中引用的dll和api;所述提取軟件樣本的二進(jìn)制可執(zhí)行文件的pe格式結(jié)構(gòu)信息的特征表示,是先對(duì)當(dāng)前軟件樣本的二進(jìn)制可執(zhí)行文件進(jìn)行格式結(jié)構(gòu)解析,然后按照格式規(guī)范提取**該軟件樣本的格式結(jié)構(gòu)信息;所述提取軟件樣本的二進(jìn)制可執(zhí)行文件的字節(jié)碼n-grams的特征表示,是先將當(dāng)前軟件樣本件的二進(jìn)制可執(zhí)行文件轉(zhuǎn)換為十六進(jìn)制字節(jié)碼序列,然后采用n-grams方法在十六進(jìn)制字節(jié)碼序列中滑動(dòng),產(chǎn)生大量的連續(xù)部分重疊的短序列特征。進(jìn)一步的,采用3-grams方法在十六進(jìn)制字節(jié)碼序列中滑動(dòng)產(chǎn)生連續(xù)部分重疊的短序列特征。進(jìn)一步的。北京軟件產(chǎn)品檢測(cè)報(bào)告漏洞掃描報(bào)告顯示依賴庫(kù)存在5個(gè)已知CVE漏洞。

網(wǎng)站代碼審計(jì),測(cè)評(píng)

    坐標(biāo)點(diǎn)(0,1)**一個(gè)完美的分類器,它將所有的樣本都正確分類。roc曲線越接近左上角,該分類器的性能越好。從圖9可以看出,該方案的roc曲線非常接近左上角,性能較優(yōu)。另外,前端融合模型的auc值為。(5)后端融合后端融合的架構(gòu)如圖10所示,后端融合方式用三種模態(tài)的特征分別訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型,然后進(jìn)行決策融合,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。本次實(shí)驗(yàn)使用了80%的樣本訓(xùn)練,20%的樣本驗(yàn)證,訓(xùn)練50個(gè)迭代以便于找到較優(yōu)的epoch值。隨著迭代數(shù)的增加,后端融合模型的準(zhǔn)確率變化曲線如圖11所示,模型的對(duì)數(shù)損失變化曲線如圖12所示。從圖11和圖12可以看出,當(dāng)epoch值從0增加到5過程中,模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率快速提高,模型的訓(xùn)練對(duì)數(shù)損失和驗(yàn)證對(duì)數(shù)損失快速減少;當(dāng)epoch值從5到50的過程中,前端融合模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率小幅提高,訓(xùn)練對(duì)數(shù)損失和驗(yàn)證對(duì)數(shù)損失緩慢下降;綜合分析圖11和圖12的準(zhǔn)確率和對(duì)數(shù)損失變化曲線,選取epoch的較優(yōu)值為40。確定模型的訓(xùn)練迭代數(shù)為40后,進(jìn)行了10折交叉驗(yàn)證實(shí)驗(yàn)。

    它已被擴(kuò)展成與軟件生命周期融為一體的一組已定義的活動(dòng)。測(cè)試活動(dòng)遵循軟件生命周期的V字模型。測(cè)試人員在需求分析階段便開始著手制訂測(cè)試計(jì)劃,并根據(jù)用戶或客戶需求建立測(cè)試目標(biāo),同時(shí)設(shè)計(jì)測(cè)試用例并制訂測(cè)試通過準(zhǔn)則。在集成級(jí)上,應(yīng)成立軟件測(cè)試**,提供測(cè)試技術(shù)培訓(xùn),關(guān)鍵的測(cè)試活動(dòng)應(yīng)有相應(yīng)的測(cè)試工具予以支持。在該測(cè)試成熟度等級(jí)上,沒有正式的評(píng)審程序,沒有建立質(zhì)量過程和產(chǎn)品屬性的測(cè)試度量。集成級(jí)要實(shí)現(xiàn)4個(gè)成熟度目標(biāo),它們分別是:建立軟件測(cè)試**,制訂技術(shù)培訓(xùn)計(jì)劃,軟件全壽命周期測(cè)試,控制和監(jiān)視測(cè)試過程。(I)建立軟件測(cè)試**軟件測(cè)試的過程及質(zhì)量對(duì)軟件產(chǎn)品質(zhì)量有直接影響。由于測(cè)試往往是在時(shí)間緊,壓力大的情況下所完成的一系列復(fù)雜的活動(dòng),因此應(yīng)由訓(xùn)練有素的人員組成測(cè)試組。測(cè)試組要完成與測(cè)試有關(guān)的多種活動(dòng),包括負(fù)責(zé)制訂測(cè)試計(jì)劃,實(shí)施測(cè)試執(zhí)行,記錄測(cè)試結(jié)果,制訂與測(cè)試有關(guān)的標(biāo)準(zhǔn)和測(cè)試度量,建立鍘試數(shù)據(jù)庫(kù),測(cè)試重用,測(cè)試**以及測(cè)試評(píng)價(jià)等。建立軟件測(cè)試**要實(shí)現(xiàn)4個(gè)子目標(biāo):1)建立全**范圍內(nèi)的測(cè)試組,并得到上級(jí)管理層的領(lǐng)導(dǎo)和各方面的支持,包括經(jīng)費(fèi)支持。2)定義測(cè)試組的作用和職責(zé)。3)由訓(xùn)練有素的人員組成測(cè)試組。用戶隱私測(cè)評(píng)確認(rèn)數(shù)據(jù)采集范圍超出聲明條款3項(xiàng)。

網(wǎng)站代碼審計(jì),測(cè)評(píng)

    對(duì)一些質(zhì)量要求和可靠性要求較高的模塊,一般要滿足所需條件的組合覆蓋或者路徑覆蓋標(biāo)準(zhǔn)。[2]軟件測(cè)試方法集成測(cè)試集成測(cè)試是軟件測(cè)試的第二階段,在這個(gè)階段,通常要對(duì)已經(jīng)嚴(yán)格按照程序設(shè)計(jì)要求和標(biāo)準(zhǔn)組裝起來的模塊同時(shí)進(jìn)行測(cè)試,明確該程序結(jié)構(gòu)組裝的正確性,發(fā)現(xiàn)和接口有關(guān)的問題,比如模塊接口的數(shù)據(jù)是否會(huì)在穿越接口時(shí)發(fā)生丟失;各個(gè)模塊之間因某種疏忽而產(chǎn)生不利的影響;將模塊各個(gè)子功能組合起來后產(chǎn)生的功能要求達(dá)不到預(yù)期的功能要求;一些在誤差范圍內(nèi)且可接受的誤差由于長(zhǎng)時(shí)間的積累進(jìn)而到達(dá)了不能接受的程度;數(shù)據(jù)庫(kù)因單個(gè)模塊發(fā)生錯(cuò)誤造成自身出現(xiàn)錯(cuò)誤等等。同時(shí)因集成測(cè)試是界于單元測(cè)試和系統(tǒng)測(cè)試之間的,所以,集成測(cè)試具有承上啟下的作用。因此有關(guān)測(cè)試人員必須做好集成測(cè)試工作。在這一階段,一般采用的是白盒和黑盒結(jié)合的方法進(jìn)行測(cè)試,驗(yàn)證這一階段設(shè)計(jì)的合理性以及需求功能的實(shí)現(xiàn)性。[2]軟件測(cè)試方法系統(tǒng)測(cè)試一般情況下,系統(tǒng)測(cè)試采用黑盒法來進(jìn)行測(cè)試的,以此來檢查該系統(tǒng)是否符合軟件需求。本階段的主要測(cè)試內(nèi)容包括健壯性測(cè)試、性能測(cè)試、功能測(cè)試、安裝或反安裝測(cè)試、用戶界面測(cè)試、壓力測(cè)試、可靠性及安全性測(cè)試等。代碼審計(jì)發(fā)現(xiàn)2處潛在內(nèi)存泄漏風(fēng)險(xiǎn),建議版本迭代修復(fù)。西寧第三方軟件檢測(cè)實(shí)驗(yàn)室

性能基準(zhǔn)測(cè)試GPU利用率未達(dá)理論最大值67%。網(wǎng)站代碼審計(jì)

    當(dāng)我們拿到一份第三方軟件測(cè)試報(bào)告的時(shí)候,我們可能會(huì)好奇第三方軟件檢測(cè)機(jī)構(gòu)是如何定義一份第三方軟件測(cè)試報(bào)告的費(fèi)用呢,為何價(jià)格會(huì)存在一些差異,如何找到高性價(jià)比的第三方軟件測(cè)試機(jī)構(gòu)來出具第三方軟件檢測(cè)報(bào)告呢。我們可以從以下三個(gè)方面著手討論關(guān)于軟件檢測(cè)機(jī)構(gòu)的第三方軟件測(cè)試報(bào)告費(fèi)用的一些問題,對(duì)大家在選擇適合價(jià)格的軟件檢測(cè)機(jī)構(gòu),出具高性價(jià)比的軟件檢測(cè)報(bào)告有一定的幫助和參考意義。1、首先,軟件檢測(cè)機(jī)構(gòu)大小的關(guān)系,從資質(zhì)上來說,軟件檢測(cè)機(jī)構(gòu)的規(guī)模大小和資質(zhì)的有效性是沒有任何關(guān)系的。可能小型的軟件檢測(cè)機(jī)構(gòu),員工人數(shù)規(guī)模會(huì)小一點(diǎn),但是出具的CMA或者CNAS第三方軟件檢測(cè)報(bào)告和大型機(jī)構(gòu)的效力是沒有區(qū)別的。但是,小機(jī)構(gòu)在人員數(shù)量,運(yùn)營(yíng)成本都會(huì)成本比較低,在這里其實(shí)是可以降低一份第三方軟件測(cè)試報(bào)告的部分費(fèi)用,所以反過來說,小型軟件檢測(cè)機(jī)構(gòu)的價(jià)格可能更加具有競(jìng)爭(zhēng)力。2、軟件檢測(cè)流程的關(guān)系,為何流程會(huì)和第三方軟件測(cè)試的費(fèi)用有關(guān)系呢。因?yàn)椋粋€(gè)機(jī)構(gòu)的軟件檢測(cè)流程如果是高效率流轉(zhuǎn),那么在同等時(shí)間內(nèi),軟件檢測(cè)機(jī)構(gòu)可以更高效的對(duì)軟件測(cè)試報(bào)告進(jìn)行產(chǎn)出,相對(duì)來說,時(shí)間成本就會(huì)降低,提高測(cè)試報(bào)告的出具效率。網(wǎng)站代碼審計(jì)

標(biāo)簽: 測(cè)評(píng)