南京軟件測(cè)試中心

來源: 發(fā)布時(shí)間:2025-04-17

    這種傳統(tǒng)方式幾乎不能檢測(cè)未知的新的惡意軟件種類,能檢測(cè)的已知惡意軟件經(jīng)過簡(jiǎn)單加殼或混淆后又不能檢測(cè),且使用多態(tài)變形技術(shù)的惡意軟件在傳播過程中不斷隨機(jī)的改變著二進(jìn)制文件內(nèi)容,沒有固定的特征,使用該方法也不能檢測(cè)。新出現(xiàn)的惡意軟件,特別是zero-day惡意軟件,在釋放到互聯(lián)網(wǎng)前,都使用主流的反**軟件測(cè)試,確保主流的反**軟件無法識(shí)別這些惡意軟件,使得當(dāng)前的反**軟件通常對(duì)它們無能為力,只有在惡意軟件大規(guī)模傳染后,捕獲到這些惡意軟件樣本,提取簽名和更新簽名庫(kù),才能檢測(cè)這些惡意軟件?;跀?shù)據(jù)挖掘和機(jī)器學(xué)習(xí)的惡意軟件檢測(cè)方法將可執(zhí)行文件表示成不同抽象層次的特征,使用這些特征來訓(xùn)練分類模型,可實(shí)現(xiàn)惡意軟件的智能檢測(cè),基于這些特征的檢測(cè)方法也取得了較高的準(zhǔn)確率。受文本分類方法的啟發(fā),研究人員提出了基于二進(jìn)制可執(zhí)行文件字節(jié)碼n-grams的惡意軟件檢測(cè)方法,這類方法提取的特征覆蓋了整個(gè)二進(jìn)制可執(zhí)行文件,包括pe文件頭、代碼節(jié)、數(shù)據(jù)節(jié)、導(dǎo)入節(jié)、資源節(jié)等信息,但字節(jié)碼n-grams特征通常沒有明顯的語義信息,大量具有語義的信息丟失,很多語義信息提取不完整。此外,基于字節(jié)碼n-grams的檢測(cè)方法提取代碼節(jié)信息考慮了機(jī)器指令的操作數(shù)。代碼簽名驗(yàn)證確認(rèn)所有組件均經(jīng)過可信機(jī)構(gòu)認(rèn)證。南京軟件測(cè)試中心

南京軟件測(cè)試中心,測(cè)評(píng)

    且4個(gè)隱含層中間間隔設(shè)置有dropout層。用于輸入合并抽取的高等特征表示的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,第二個(gè)神經(jīng)元的隱含層個(gè)數(shù)是10,且2個(gè)隱含層中間設(shè)置有dropout層。且所有dropout層的dropout率等于。本次實(shí)驗(yàn)使用了80%的樣本訓(xùn)練,20%的樣本驗(yàn)證,訓(xùn)練50個(gè)迭代以便于找到較優(yōu)的epoch值。隨著迭代數(shù)的增加,中間融合模型的準(zhǔn)確率變化曲線如圖17所示,模型的對(duì)數(shù)損失變化曲線如圖18所示。從圖17和圖18可以看出,當(dāng)epoch值從0增加到20過程中,模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率快速提高,模型的訓(xùn)練對(duì)數(shù)損失和驗(yàn)證對(duì)數(shù)損失快速減少;當(dāng)epoch值從30到50的過程中,中間融合模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率基本保持不變,訓(xùn)練對(duì)數(shù)損失緩慢下降;綜合分析圖17和圖18的準(zhǔn)確率和對(duì)數(shù)損失變化曲線,選取epoch的較優(yōu)值為30。確定模型的訓(xùn)練迭代數(shù)為30后,進(jìn)行了10折交叉驗(yàn)證實(shí)驗(yàn)。中間融合模型的10折交叉驗(yàn)證的準(zhǔn)確率是%,對(duì)數(shù)損失是,混淆矩陣如圖19所示,規(guī)范化后的混淆矩陣如圖20所示。中間融合模型的roc曲線如圖21所示,auc值為,已經(jīng)非常接近auc的**優(yōu)值1。(7)實(shí)驗(yàn)結(jié)果比對(duì)為了綜合評(píng)估本實(shí)施例提出融合方案的綜合性能。沈陽(yáng)第三方軟件檢測(cè)公司從傳統(tǒng)到智能:艾策科技助力制造業(yè)升級(jí)之路。

南京軟件測(cè)試中心,測(cè)評(píng)

    每一種信息的來源或者形式,都可以稱為一種模態(tài)。例如,人有觸覺,聽覺,視覺,嗅覺。多模態(tài)機(jī)器學(xué)習(xí)旨在通過機(jī)器學(xué)習(xí)的方法實(shí)現(xiàn)處理和理解多源模態(tài)信息的能力。多模態(tài)學(xué)習(xí)從1970年代起步,經(jīng)歷了幾個(gè)發(fā)展階段,在2010年后***步入深度學(xué)習(xí)(deeplearning)階段。在某種意義上,深度學(xué)習(xí)可以被看作是允許我們“混合和匹配”不同模型以創(chuàng)建復(fù)雜的深度多模態(tài)模型。目前,多模態(tài)數(shù)據(jù)融合主要有三種融合方式:前端融合(early-fusion)即數(shù)據(jù)水平融合(data-levelfusion)、后端融合(late-fusion)即決策水平融合(decision-levelfusion)以及中間融合(intermediate-fusion)。前端融合將多個(gè)**的數(shù)據(jù)集融合成一個(gè)單一的特征向量空間,然后將其用作機(jī)器學(xué)習(xí)算法的輸入,訓(xùn)練機(jī)器學(xué)習(xí)模型,如圖1所示。由于多模態(tài)數(shù)據(jù)的前端融合往往無法充分利用多個(gè)模態(tài)數(shù)據(jù)間的互補(bǔ)性,且前端融合的原始數(shù)據(jù)通常包含大量的冗余信息。因此,多模態(tài)前端融合方法常常與特征提取方法相結(jié)合以剔除冗余信息,基于領(lǐng)域經(jīng)驗(yàn)從每個(gè)模態(tài)中提取更高等別的特征表示,或者應(yīng)用深度學(xué)習(xí)算法直接學(xué)習(xí)特征表示,然后在特性級(jí)別上進(jìn)行融合。后端融合則是將不同模態(tài)數(shù)據(jù)分別訓(xùn)練好的分類器輸出決策進(jìn)行融合,如圖2所示。

    等價(jià)類劃分法將不能窮舉的測(cè)試過程進(jìn)行合理分類,從而保證設(shè)計(jì)出來的測(cè)試用例具有完整性和**性。有數(shù)據(jù)輸入的地方,可以使用等價(jià)類劃分法。從大量數(shù)據(jù)中挑選少量**數(shù)據(jù)進(jìn)行測(cè)試有效等價(jià)類:符合需求規(guī)格說明書規(guī)定的數(shù)據(jù)用來測(cè)試功能是否正確實(shí)現(xiàn)無效等價(jià)類:不合理的輸入數(shù)據(jù)**—用來測(cè)試程序是否有強(qiáng)大的異常處理能力(健壯性)使用**少的測(cè)試數(shù)據(jù),達(dá)到**好的測(cè)試質(zhì)量邊界值分析法對(duì)輸入或輸出的邊界值進(jìn)行測(cè)試的一種黑盒測(cè)試方法。是作為對(duì)等價(jià)類劃分法的補(bǔ)充,這種情況下,其測(cè)試用例來自等價(jià)類的邊界。邊界點(diǎn)1、邊界是指相對(duì)于輸入等價(jià)類和輸出等價(jià)類而言,稍高于、稍低于其邊界值的一些特定情況。2、邊界點(diǎn)分為上點(diǎn)、內(nèi)點(diǎn)和離點(diǎn)。如果是范圍[1,100]需要選擇0,1,2,50,99,100,101如果是個(gè)數(shù)**多20個(gè)[0,20]需要測(cè)0,10,20,-1,21因果圖分析法用畫圖的方式表達(dá)輸入條件和輸出結(jié)果之間的關(guān)系。1恒等2與3或4非5互斥1個(gè)或者不選6***必須是1個(gè)7包含可以多選不能不選8要求如果a=1,則要求b必須是1,反之如果a=0時(shí),b的值無所謂9**關(guān)系當(dāng)a=1時(shí),要求b必須為0;而當(dāng)a=0時(shí)。無障礙測(cè)評(píng)認(rèn)定視覺障礙用戶支持功能缺失4項(xiàng)。

南京軟件測(cè)試中心,測(cè)評(píng)

    什么是軟件測(cè)試通過手工和自動(dòng)化工具對(duì)被測(cè)對(duì)象進(jìn)行檢測(cè),驗(yàn)證實(shí)際結(jié)果和預(yù)期結(jié)果之間的差異。軟件測(cè)試的原則1測(cè)試是為了證明軟件存在缺陷2測(cè)試應(yīng)該盡早介入3注意測(cè)試缺陷的群集效應(yīng)80-204殺蟲劑現(xiàn)象5合法數(shù)據(jù)和不合法數(shù)據(jù)和邊界值,網(wǎng)絡(luò)異常和電源斷電等6回歸測(cè)試防止出現(xiàn)更多問題7妥善保存一切測(cè)試文檔軟件測(cè)試的目的1暴露軟件中的缺陷和BUG2記錄軟件運(yùn)行中產(chǎn)生的一些數(shù)據(jù),為開發(fā)提供改良的數(shù)據(jù)支持為什么需要軟件測(cè)試1功能實(shí)現(xiàn)且正確執(zhí)行2軟件運(yùn)行的信息數(shù)據(jù)如果一個(gè)產(chǎn)品開發(fā)完成之后發(fā)現(xiàn)了很多問題,說明此軟件開發(fā)過程很可能是有缺陷的,因此,軟件測(cè)試的目的是保證整個(gè)軟件開發(fā)過程是高質(zhì)量的。測(cè)試分類1單元測(cè)試分單元2集成測(cè)試多個(gè)單元3系統(tǒng)測(cè)試用戶角度-功能主體4驗(yàn)證測(cè)試α測(cè)試-內(nèi)測(cè)β測(cè)試-公測(cè)UAT測(cè)試-客戶驗(yàn)收使用系統(tǒng)測(cè)試分類1功能測(cè)試2性能測(cè)試3安全測(cè)試4兼容性測(cè)試測(cè)試方法1按照測(cè)試對(duì)象分類白盒測(cè)試黑盒測(cè)試灰盒測(cè)試2按照測(cè)試對(duì)象是否執(zhí)行分類靜態(tài)測(cè)試動(dòng)態(tài)測(cè)試3按照測(cè)試手段進(jìn)行分類手工測(cè)試靈活改變測(cè)試操作和環(huán)境自動(dòng)化測(cè)試1自己寫腳本2第三方工具進(jìn)行測(cè)試軟件質(zhì)量1維護(hù)性2移植性3效率性4可靠性5易用性6功能性軟件測(cè)試流程1需求分析2設(shè)計(jì)用例3評(píng)審用例4。對(duì)比分析顯示資源占用率高于同類產(chǎn)品均值26%。貴州軟件評(píng)測(cè)單位

第三方驗(yàn)證實(shí)際啟動(dòng)速度較廠商宣稱慢0.7秒。南京軟件測(cè)試中心

    在不知道多長(zhǎng)的子序列能更好的表示可執(zhí)行文件的情況下,只能以固定窗口大小在字節(jié)碼序列中滑動(dòng),產(chǎn)生大量的短序列,由機(jī)器學(xué)習(xí)方法選擇可能區(qū)分惡意軟件和良性軟件的短序列作為特征,產(chǎn)生短序列的方法叫n-grams?!?80074ff13b2”的字節(jié)碼序列,如果以3-grams產(chǎn)生連續(xù)部分重疊的短序列,將得到“080074”、“0074ff”、“74ff13”、“ff13b2”四個(gè)短序列。每個(gè)短序列特征的權(quán)重表示有多種方法。**簡(jiǎn)單的方法是如果該短序列在具體樣本中出現(xiàn),就表示為1;如果沒有出現(xiàn),就表示為0,也可以用。本實(shí)施例采用3-grams方法提取特征,3-grams產(chǎn)生的短序列非常龐大,將產(chǎn)生224=(16,777,216)個(gè)特征,如此龐大的特征集在計(jì)算機(jī)內(nèi)存中存儲(chǔ)和算法效率上都是問題。如果短序列特征的tf較小,對(duì)機(jī)器學(xué)習(xí)可能沒有意義,選取了tf**高的5000個(gè)短序列特征,計(jì)算每個(gè)短序列特征的,每個(gè)短序列特征的權(quán)重是判斷其所在軟件樣本是否為惡意軟件的依據(jù),也是區(qū)分每個(gè)軟件樣本的依據(jù)。(4)前端融合前端融合的架構(gòu)如圖4所示,前端融合方式將三種模態(tài)的特征合并,然后輸入深度神經(jīng)網(wǎng)絡(luò),隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過擬合,優(yōu)化器。南京軟件測(cè)試中心

標(biāo)簽: 測(cè)評(píng)