QCL激光器的基本結構包括FP-QCL(上圖)、DFB-QCL(中圖)和ECqcL(下圖)。增益介質顯示為灰色,波長選擇機制為藍色,鍍膜面為橙色,輸出光束為紅色。1.**簡單的結構是F-P腔激光器(FP-QCL)。在F-P結構中,切割面為激光提供反饋,有時也使用介質膜以優(yōu)化輸出。2.第二種結構是在QC芯片上直接刻分布反饋光柵。這種結構(DFB-QCL)可以輸出較窄的光譜,但是輸出功率卻比FP-QCL結構低很多。通過**大范圍的溫度調諧,DFB-QCL還可以提供有限的波長調諧(通過緩慢的溫度調諧獲得10~20cm-1的調諧范圍,或者通過快速注進電流加熱調諧獲得2~3cm-1的范圍)。3.第三種結構是將QC芯片和外腔結合起來,形成ECqcL。這種結構既可以提供窄光譜輸出,又可以在QC芯片整個增益帶寬上(數(shù)百cm-1)提供快調諧(速度超過10ms)。由于ECqcL結構使用低損耗元件,因此它可在便攜式電池供電的條件下高效運作。 QCL相比其它激光器具有體積小、重量輕的特點,其攜帶方便,便于系統(tǒng)化和集成化。內(nèi)蒙古CH4QCL激光器型號
直接吸收光譜技術是通過調諧激光頻率到選擇吸收譜線透過率和譜線形狀進行分析,并獲取一些重要信息,如吸收譜線強度和增寬系數(shù)。從這些光譜測量得到信息可以推斷出氣體溫度、濃度、氣流速度以及壓力等參數(shù)值。信號發(fā)生器發(fā)生鋸齒波或三角波掃描信號給激光驅動器驅動DFB激光器,激光器輸出激光通過待測氣體,光電探測器接收到透射光,并通過對光強信號進行分析,從而測量得到氣體濃度值。實現(xiàn)直接吸收光譜檢測透射光容易受到背景噪聲的干擾、激光器光強波動等因素的影響,為了減小噪聲的干擾,通常會使用高靈敏光譜技術,如采用波長調制技術對目標信號進行高頻調制,實現(xiàn)抑制高頻背景噪聲,從而極大提高探測靈敏度和精度。信號發(fā)生器發(fā)生鋸齒波或三角波掃描信號疊加快速正弦頻率f的調制信號給激光驅動器驅動DFB激光器,激光器輸出調制光經(jīng)過待測氣體,光電探測器接收到吸收后光強,此時將光信號轉換成電信號輸入到鎖相放大器對信號進行解調輸出波長調制的諧波信號,根據(jù)諧波信號的值計算得到此時氣體濃度值。 寧夏國產(chǎn)QCL激光器哪家好針對部分疾病,目前已有許多基于 TDLAS 技術的無創(chuàng)檢測方法,且效果明顯。
中紅外溫室氣體激光器正是順應這一市場趨勢,融合了先進的激光技術和智能化設計,提供高性能的氣體檢測解決方案。我們產(chǎn)品在靈敏度、穩(wěn)定性和數(shù)據(jù)處理能力等方面具有明顯優(yōu)勢,能夠為客戶提供精確可靠的監(jiān)測數(shù)據(jù)。這不僅幫助客戶更好地應對和管理溫室氣體排放,還為其在環(huán)保方面的決策提供了重要依據(jù)。通過高效的數(shù)據(jù)分析和處理,我們的設備能夠實時反饋監(jiān)測結果,助力企業(yè)和**快速響應環(huán)境變化。展望未來,隨著全球對氣候變化和環(huán)保政策的重視不斷加深,中紅外溫室氣體激光器的市場需求將持續(xù)增長。尤其是在國際社會共同應對氣候變化的背景下,各國在溫室氣體排放監(jiān)測方面的需求愈發(fā)迫切。我們的產(chǎn)品不僅在技術上保持**地位,更在市場價值和應用范圍上展現(xiàn)出廣闊的前景。我們始終致力于為客戶提供高效、可靠的溫室氣體檢測方案,助力全球環(huán)境保護事業(yè)的發(fā)展??偠灾?,中紅外溫室氣體激光器的未來充滿機遇,隨著市場對環(huán)境保護的重視程度不斷加深,相關技術也將不斷創(chuàng)新和升級。我們期待與客戶共同攜手,推動中紅外溫室氣體激光器在各個領域的廣泛應用,為實現(xiàn)可持續(xù)發(fā)展的美好未來貢獻力量。通過技術的進步與合作的加深。
激光器的發(fā)展里程碑如下:1960年發(fā)明的固態(tài)激光器和氣體激光器,1962年發(fā)明的雙極型半導體激光器和1994年發(fā)明的單極型量子級聯(lián)激光器(QCL)是激光領域的三個重大變革性里程碑。量子級聯(lián)激光器的工作原理與通常的半導體激光器截然不同,它打破了傳統(tǒng)p-n結型半導體激光器的電子-空穴復合受激輻射機制,其發(fā)光波長由半導體能隙來決定,填補了半導體中紅外激光器的空白。QCL受激輻射過程只有電子參與,其激射方案是利用在半導體異質結薄層內(nèi)由量子限制效應引起的分離電子態(tài)之間產(chǎn)生粒子數(shù)反轉,從而實現(xiàn)單電子注入的多光子輸出,并且可以輕松得通過改變量子阱層的厚度來改變發(fā)光波長。量子級聯(lián)激光器比其它激光器的優(yōu)勢在于它的級聯(lián)過程,電子從高能級跳躍到低能級過程中,不但沒有損失,還可以注入到下一個過程再次發(fā)光。這個級聯(lián)過程使這些電子"循環(huán)"起來,從而造就了一種令人驚嘆的激光器。因此,量子級聯(lián)激光器的發(fā)明被視為半導體激光理論的一次變革和里程碑。 TDLAS能實現(xiàn)"原位、連續(xù)、實時測量",環(huán)境適應力強,易于設備的小型化。
TDLAS技術具有高靈敏度、高光譜分辨率、快速響應等優(yōu)點,廣泛應用于氣體的痕量探測。利用氣體吸收譜線隨溫度、氣壓等因素變化的特性,該技術可實現(xiàn)對氣體體系溫度、濃度、速度和流量等參數(shù)的測量。無干擾、低價、可小型化等是TDLAS技術的主要優(yōu)點。我們致力于發(fā)展高速(微秒級)、高靈敏(ppb級)、可攜帶式的基于可調諧半導體激光器的氣體測量技術方法,拓展在航空航天、石油化工和燃燒等領域的應用。調諧二極管激光吸收光譜(TDLAS)是激光氣體分析儀**常用的技術之一。其工作原理如下:激光光源:使用調諧半導體激光器作為光源,能夠在特定的窄波段范圍內(nèi)快速調諧激光波長,精確匹配待測氣體的吸收峰。氣體吸收過程:激光器發(fā)射的窄帶單色激光穿過待測氣體樣品。由于特定氣體分子在特定波長處具有吸收峰,部分激光能量被吸收,導致光強度減弱。探測器測量:激光通過氣體后,剩余的激光光強被探測器接收。探測器將光信號轉換為電信號,測量激光強度的衰減。信號處理與濃度計算:分析儀通過計算吸收光譜的強度和形狀,使用朗伯-比爾定律(Beer-LambertLaw)來推導出氣體的濃度。TDLAS技術的高分辨率和高靈敏度使其能夠準確檢測低濃度的氣體。 QCL在高靈敏檢測方面具備天然的優(yōu)勢,可能成為呼吸氣體分析技術領域瓶頸的可靠解決方案。湖南HerriotQCL激光器批發(fā)
基于光譜學原理的氣體檢測,有非接觸、快響應、高靈敏、大范圍監(jiān)測等優(yōu)點,是溫室氣體監(jiān)測技術的主流方向。內(nèi)蒙古CH4QCL激光器型號
紅外光譜檢測方法主要有使用寬帶光源的傅里葉變換紅外光譜(FTIR)和非分散紅外光譜(NDIR)技術,以及紅外激光光譜技術。與使用寬帶光源的FTIR和NDIR相比,紅外激光光譜由于采用高單色性的紅外激光作為光源,具有更高的光譜分辨率,不需要使用額外的分光部件,易于實現(xiàn)儀器的小型化。另外,高功率密度激光光源更方便實現(xiàn)長光程檢測。紅外激光光譜學依據(jù)波段分為近紅外光譜和中紅外光譜。近紅外波段工作在-μm的近紅外區(qū),相應于某些分子的“泛頻”譜帶。分子在這些譜帶的吸收系數(shù)比中紅外的基頻吸收要弱得多,一般要低2-3數(shù)量級。盡管如此,由III-V族化合物制成的半導體激光由于在通信和電子工業(yè)元件方面的廣泛應用,其價格相對便宜,質量、性能和輸出功率都相當優(yōu)越,且在接近室溫工作,使其在一些濃度較高或對靈敏度要求較低的污染源排放的氣體監(jiān)測中得到了很好的應用,足以達到ppm的檢測水平,甚至到達ppb的水平,接近中紅外光譜系統(tǒng)檢測靈敏度的1-10%。 內(nèi)蒙古CH4QCL激光器型號