為了保證良好的電機控制性能,編碼器的反饋信號必須能夠提供大量的脈沖,尤其是在轉速很低的時候,采用傳統(tǒng)的增量式編碼器產生大量的脈沖,從許多方面來看都有問題,當電機高速旋轉(6000rpm)時,傳輸和處理數字信號是困難的。在這種情況下,處理給伺服電機的信號所需帶寬(例如編碼器每轉脈沖為10000)將很容易地超過MHz門限;而另一方面采用模擬信號很大減少了上述麻煩,并有能力模擬編碼器的大量脈沖。這要感謝正弦和余弦信號的內插法,它為旋轉角度提供了計算方法。這種方法可以獲得基本正弦的高倍增加,例如可從每轉1024個正弦波編碼器中,獲得每轉超過1000,000個脈沖。接受此信號所需的帶寬只要稍許大于100KHz即已足夠。內插倍頻需由二次系統(tǒng)完成。相對型旋轉編碼器的機械安裝有高速端安裝、低速端安裝、輔助機械裝置安裝等多種形式。南京755編碼器生產廠家
嚴格地講,方波較高只能做4倍頻,雖然有人用時差法可以分的更細,但那基本不是增量編碼器推薦的,更高的分頻要用增量脈沖信號是SIN/COS類正余弦的信號來做,后續(xù)電路可通過讀取波形相位的變化,用模數轉換電路來細分,5倍、10倍、20倍,甚至100倍以上,分好后再以方波波形輸出(PPR)。分頻的倍數實際是有限制的,首先,模數轉換有時間響應問題,模數轉換的速度與分辨的精確度是一對矛盾,不可能無限細分,分的過細,響應與很準度就有問題;其次,原編碼器的刻線精度,輸出的類正余弦信號本身一致性、波形完美度是有限的,分的過細,只會把原來碼盤的誤差暴露得更明顯,而帶來誤差。細分做起來容易,但要做好卻很難,其一方面取決于原始碼盤的刻線精度與輸出波形完美度,另一方面取決于細分電路的響應速度與分辨很準度。例如,德國的工業(yè)編碼器,推薦的較佳細分是20倍,更高的細分是其推薦的精度更高的角度編碼器,但旋轉的速度是很低的。揚州370編碼器公司編碼器行業(yè)的預期增長體現了其背后的驅動力。
在高精度的控制系統(tǒng)中,需用到高分辨率的編碼器,但高分辨率的編碼器在較高速度的運行中,由于信號的高密度,無論是自身輸出的信號的電氣響應,還是接受設備的響應都無法跟上,從而限制了系統(tǒng)高精又高速的要求,而較低分辨率的信號可以就滿足高速時的測量反饋。在啟動與減速后定位過程中,選用高分辨率的信號,在加速、高速的過程中選用較低分辨率的信號,兩組信號的位置疊加。而此種雙輸出的編碼器就是高速而同時高精運動控制的解決方案。這種應用要求一樣出現在光柵尺上。
磁性編碼器的結構與光學編碼器類似,但它利用的是磁場,而非光束。磁性編碼器使用磁性碼盤替代帶槽光電碼盤,磁性碼盤上帶有間隔排列的磁極,并在一列霍爾效應傳感器或磁阻傳感器上旋轉。碼盤的任何轉動都會使這些傳感器產生響應,而產生的信號將傳輸至信號調理前端電路以確定軸的位置。相較于光學編碼器,磁性編碼器的優(yōu)勢在于更耐用、抗振和抗沖擊。而且,在遇到灰塵、污垢和油漬等污染物的情況下,光學編碼器的性能會大打折扣,磁性編碼器卻不受影響,因此非常適合惡劣環(huán)境應用。不過,電機(尤其是步進電機)產生的電磁干擾會對磁性編碼器造成極大的影響,并且溫度變化也會使其產生位置漂移。此外,磁性編碼器的分辨率和精度相對較低,在這方面遠不及光學和電容式編碼器。編碼器是把角位移或直線位移轉換成電信號的一種裝置。
針對目前視頻編碼標準和視頻編碼器較多、缺乏統(tǒng)一評價標準和客觀評價結果的問題,提出了使用視頻質量、編碼速度、碼率節(jié)省百分比、內存占用等指標相結合的評價體系,同時給出了評測平臺的搭建方法。采用多個不同的公開視頻序列為測試源,選取常見的H.264/MPEG-AVC、H.265/MPEG-HEVC、VP8、VP9標準和基于小波的Hitav對應的編碼器搭建評測平臺對各編碼器進行性能評價實驗。實驗表明,H.265和VP9在視頻質量、碼流節(jié)省方面表現優(yōu)異,但復雜度過高;H.264復雜度低且在低分辨率和簡單視頻場景表現優(yōu)異;Hitav對高分辨高復雜度視頻序列處理較好。編碼器在單圈編碼的基礎上再增加圈數的編碼,以擴大編碼器的測量范圍。臺州增量式編碼器生產廠家
編碼器使用一段時間后,其性能保持不變化的能力稱為穩(wěn)定性。南京755編碼器生產廠家
一個編碼器的分辨率依賴于其編碼器的刻線數(增量編碼器)或者編碼器碼盤模式(肯定值編碼器)。一般來說,分辨率是一個固定值,一旦編碼器被制造出來就沒辦法再增加刻線數或者編碼。但是增量編碼器可以通過信號細分來增加分辨率,例如,方波增量編碼器(HTL/TTL)輸出增量方波信號,通過每次記錄每個增量通道(信號A)的上升沿和下降沿,可以提高兩倍的編碼器分辨率。這樣當我們記錄兩個通道(信號A和B)的上升沿和下降沿時,我們可以提高四倍的編碼器分辨率(4倍頻)。南京755編碼器生產廠家