如何BMS電池管理系統(tǒng)設計

來源: 發(fā)布時間:2025-07-28

    入局BMS制造的廠商分為幾類:一類是動力電池BMS中具主導能力的終端用戶-車廠,事實上國外BMS制造實力較強的也就是車廠,如通用、特斯拉等;國內(nèi)有比亞迪、華霆動力等。第二類是電池廠,包含電芯廠商與做pack的廠商,如三星、寧德時代、欣旺達、德賽電池、拓邦股份、等;第三類BMS制造商,此類廠商有多年的電力電子技術積累,有高校背景或相關企業(yè)背景的研發(fā)團隊,如億能電子、杭州高特電子、協(xié)能科技等企業(yè)。目前看來儲能電池的終端用戶沒有加入BMS研發(fā)與制造的需求與具體行動,可以認為儲能電池BMS行業(yè)缺乏一個占據(jù)了重要優(yōu)勢的參與者,給電池廠以及專注做儲能BMS的廠商留下了巨大的發(fā)展空間。儲能市場一旦確立,將給予電池廠與專門BMS生產(chǎn)廠商以非常大的發(fā)揮空間。在未來電動汽車的BMS生產(chǎn)廠商也極有可能成為大規(guī)模儲能項目使用的BMS供應商的重要組成部分。 儲能BMS均衡技術主要是指電池管理系統(tǒng)BMS中用于維護電池組中各個單體電池電量一致性的技術。如何BMS電池管理系統(tǒng)設計

如何BMS電池管理系統(tǒng)設計,BMS

    當前BMS(電池管理系統(tǒng))發(fā)展呈現(xiàn)智能化、集成化與高安全性的趨勢。技術層面,BMS正從傳統(tǒng)監(jiān)控向AI深度融合演進,通過機器學習優(yōu)化SOC/SOH預測,將估算誤差降至3%以內(nèi),并依托數(shù)字孿生技術實現(xiàn)電池壽命的虛擬故障自診斷。例如華為云端BMS方案通過大數(shù)據(jù)訓練,使SOH預測準確度提升至95%。硬件架構上,模塊化分布式設計成為主流,特斯拉Model3采用“域控制器+子模塊”架構,將單體電池監(jiān)控周期縮短至10ms級,并支持800V平臺。安全防護方面,BMS與整車熱管理系統(tǒng)深度耦合,寧德時代,而比亞迪“刀片電池”BMS整合熱失控預警與定向?qū)Я骷夹g,實現(xiàn)故障區(qū)域隔離。此外,行業(yè)正加速構建“車-樁-網(wǎng)”協(xié)同體系,華為聯(lián)合車企推動兆瓦級充電設施標準化,形成安全補能閉環(huán)。在市場層面,我國的BMS市場規(guī)模預計持續(xù)增長,2025年或達299億元,競爭格局呈現(xiàn)動力電池企業(yè)、整車廠商與第三方BMS企業(yè)三足鼎立態(tài)勢。然而,高成本、極端環(huán)境適應性及標準化滯后仍是制約因素,需通過軟硬件協(xié)同創(chuàng)新與開源生態(tài)構建突破瓶頸。 標準BMS價格通過平衡管理,BMS系統(tǒng)保護板能夠確保電池組內(nèi)各節(jié)電池的壓差不大,從而提高整個電池組的充放電性能。

如何BMS電池管理系統(tǒng)設計,BMS

    鋰電池之所以需要保護,是由它本身特性決定的。由于鋰電池本身的材料決定了它不能被過充、過放、過流、短路及超高溫充放電,因此鋰電池鋰電組件總會跟著一塊精致的保護板和一片電流保護器出現(xiàn)。鋰電池的保護功能通常由保護電路板和PTC等電流器件協(xié)同完成,保護板是由電子電路組成,在-40℃至+85℃的環(huán)境下時刻準確的監(jiān)視電芯的電壓和充放回路的電流,及時操控電流回路的通斷;PTC在高溫環(huán)境下防止電池發(fā)生惡劣的損壞。保護板通常包括IC、MOS開關及輔助器件NTC、ID、存儲器等。其中操控IC,在一切正常的情況下操控MOS開關導通,使電芯與外電路溝通,而當電芯電壓或回路電流超過規(guī)定值時,它立刻操控MOS開關關斷,保護電芯的安全。NTC是Negativetemperaturecoefficient的縮寫,意即負溫度系數(shù),在環(huán)境溫度升高時,其阻值降低,使用電設備或充電設備及時反應、操控內(nèi)部中斷而停止充放電。

    BMS,即電池管理系統(tǒng)(BatteryManagementSystem),在各類使用電池的設備中扮演著極為關鍵的角色,堪稱電池的“智慧管家”。它主要針對二次電池進行管理,是電池與用戶之間的重要紐帶,廣泛應用于電動汽車、電瓶車、機器人、無人機以及儲能系統(tǒng)等諸多領域。從功能層面來看,BMS具有多項中心功能。其一為準確估測SOC(荷電狀態(tài)),即精細計算電池的剩余電量。這一功能至關重要,它確保SOC始終處于合理區(qū)間,防止電池因過充電或過放電而遭受損傷,同時能實時向用戶反饋電池的剩余能量情況。比如在電動汽車中,駕駛者可通過車輛儀表盤直觀了解剩余電量,從而合理規(guī)劃行程。其二是動態(tài)監(jiān)測功能。在電池充放電過程中,BMS會實時采集關鍵數(shù)據(jù),如電動汽車蓄電池組中每塊電池的端電壓、溫度、充放電電流以及電池包總電壓等。通過持續(xù)監(jiān)測這些參數(shù),及時察覺電池是否存在過充或過放跡象,保證電池安全。一旦發(fā)現(xiàn)某塊電池出現(xiàn)異常,能迅速將其識別出來,確保整組電池運行的可靠性。與此同時,BMS還會為每塊電池建立詳盡的使用歷史檔案,這些數(shù)據(jù)為后續(xù)優(yōu)化電池、充電器以及電動機等提供了寶貴資料,也為離線分析系統(tǒng)故障奠定了基礎。在實際操作中。 當溫度異常升高(如超過 60℃),立即切斷充放電回路,防止熱失控。

如何BMS電池管理系統(tǒng)設計,BMS

    主動均衡技術主動均衡又稱非能量耗散式均衡,其原理在充電和放電循環(huán)期間,是將能量高的電芯內(nèi)的能量轉移到能量低的電芯中去,使得電池PACK內(nèi)的電荷得到重新分配,從而縮短充電時間,延長放電使用時間。在適用場景上,主動均衡更加適用于大容量、高串數(shù)的鋰電池組應用。BMS被動均衡技術先于主動均衡在電動市場中應用,技術也較為成熟些。主動均衡則較為復雜,變壓器方案的設計以及開關矩陣的設計無疑會使成本增加明顯。但主動均衡相比采用能量傳遞分配的原則,因而能量利用率相比被動均衡更高。在實際應用中,主動均衡技術也被普遍認為更為合理。例如,科列自主研發(fā)的雙向DC-DC主動均衡芯片,它采用了科學的智能算法,能夠及時地補償電池組產(chǎn)生的差異,確保電池一致性,延長電池組的使用壽命和平均無故障時間。設備顯示電池故障代碼,或溫度、電壓數(shù)據(jù)異常波動。智能BMS管理系統(tǒng)云平臺設計

充電異常(過充保護觸發(fā)),設備突然斷電(過放 / 過流),電池組壽命縮短(均衡失效)。如何BMS電池管理系統(tǒng)設計

    基于模型的方法估算電池SOC,包括電化學阻抗頻譜法(EIS)和等效電路模型(ECM),通過模擬電池的電化學反應和電氣行為來進行深入的SOC分析。這些方法可評估內(nèi)阻、容量和其他關鍵參數(shù),從而多方面了解各種運行條件下的SOC??柭鼮V波是另一種流行的基于模型的技術,它能整合來自多個傳感器的數(shù)據(jù),即使在動態(tài)環(huán)境中也能精確估算SOC。然而,卡爾曼濾波法的準確性容易受到傳感器漂移、極端溫度變化和電池行為變化等外部因素的影響。大多數(shù)電動汽車使用不同的技術組合來準確測量SOC。庫侖計數(shù)和OCV迅速獲得基本數(shù)據(jù),而EIS、ECM和卡爾曼濾波則提供更詳細和更精確的信息。除此之外,神經(jīng)網(wǎng)絡,人工智能的應用也在不斷的提高SOC的準確性。 如何BMS電池管理系統(tǒng)設計