福建超寬帶射頻功率放大器系列

來源: 發(fā)布時間:2022-07-01

其次是低端智能手機(35%)和奢華智能手機(13%)。25G基站,PA數(shù)倍增長,GaN大有可為5G基站,射頻PA需求大幅增長5G基站PA數(shù)量有望增長16倍。4G基站采用4T4R方案,按照三個扇區(qū),對應的PA需求量為12個,5G基站,預計64T64R將成為主流方案,對應的PA需求量高達192個,PA數(shù)量將大幅增長。5G基站射頻PA有望量價齊升。目前基站用功率放大器主要為基于硅的橫向擴散金屬氧化物半導體LDMOS技術,不過LDMOS技術適用于低頻段,在高頻應用領域存在局限性。對于5G基站PA的一些要求可能包括3~6GHz和24GHz~40GHz的運行頻率,RF功率在,預計5G基站GaN射頻PA將逐漸成為主導技術,而GaN價格高于LDMOS和GaAs。GaN具有優(yōu)異的高功率密度和高頻特性。提高功率放大器RF功率的簡單的方式就是增加電壓,這讓氮化鎵晶體管技術極具吸引力。如果我們對比不同半導體工藝技術,就會發(fā)現(xiàn)功率通常會如何隨著高工作電壓IC技術而提高。硅鍺(SiGe)技術采用相對較低的工作電壓(2V至3V),但其集成優(yōu)勢非常有吸引力。GaAs擁有微波頻率和5V至7V的工作電壓,多年來一直應用于功率放大器。硅基LDMOS技術的工作電壓為28V,已經(jīng)在電信領域使用了許多年,但其主要在4GHz以下頻率發(fā)揮作用。射頻功率放大器包括A類、AB類、B類和c類等,開關放大 器包括D類、E類和F類等。福建超寬帶射頻功率放大器系列

    ProductGainLinearPowerVoltageFrequencySST12CP113425–5–SST12CP11C3725––SST12CP123425––SST12CP213725––SST12CP333925––SST12LP0729––SST12LP07A28––SST12LP07E3020––SST12LP083020––SST12LP08A29––SST12LP143020––SST12LP14A2921––SST12LP14C3220––SST12LP14E2319––SST12LP153523––SST12LP15A3222––SST12LP15B3222––SST12LP17A28––SST12LP17B2619––SST12LP17E2918––SST12LP18E2518––SST12LP19E25––SST12LP2030183––SST12LP222719––SST12LP252719––SST11CP15–––SST11CP15E26–29––SST11CP1630––SST11CP223120––SST11LP1228-3420––SST11LF043018––SST11LF052817––SST11LF082817––SST12LF012919––SST12LF0229––SST12LF0328193––SST12LF092417––不難看出,Microchip的WiFiPA以低功率為主,*在。不得不說,Mircochip的PA命名方式讓筆者感到困惑,很難從型號本身猜到其性能指標。本文給出筆者曾經(jīng)用過的SST12CP11的性能指標,如下圖,還是很不錯的。MicrosemiMicrosemiCorporation總部設于加利福尼亞州爾灣市,是一家的高性能模擬和混合信號集成電路及高可靠性半導體設計商、制造商和營銷商。陜西L波段射頻功率放大器價格多少在射頻/微波 IC中一般用方形螺旋電感。

    由射頻功率放大器的配置狀態(tài)得知射頻功率放大器的配置狀態(tài)電阻值。其中,頻段與射頻功率放大器的對應情況包括兩種:一個頻段對應一個射頻功率放大器或多個頻段對應一個射頻功率放大器。移動終端在進行頻段切換前,移動終端的射頻功率放大器的狀態(tài)包括開啟狀態(tài)或關閉狀態(tài),移動終端在進行頻段切換時,需要開啟一個或多個射頻功率放大器。射頻功率放大器的配置狀態(tài)即移動終端在進行頻段切換時,此時移動終端的射頻功率放大器的狀態(tài)。其中,由于射頻功率放大器的開啟狀態(tài)與關閉狀態(tài)所對應的電阻值不同,預設射頻功率放大器的配置狀態(tài)即預設射頻功率放大器的配置狀態(tài)電阻值。因此,射頻功率放大器的配置狀態(tài)電阻值包括開啟狀態(tài)的電阻值與關閉狀態(tài)的電阻值。其中,每個射頻功率放大器配置一個匹配電阻,關閉狀態(tài)的電阻值為射頻功率放大器的電阻值,開啟狀態(tài)的電阻值為匹配電阻的電阻值。不同的射頻功率放大器設置不同的匹配電阻,不同的匹配電阻的電阻值不相等,并且滿足若干個并聯(lián)后不相等。本申請對于射頻功率放大器的個數(shù)不作限定,匹配電阻的個數(shù)與射頻功率放大器的個數(shù)相同。其中,檢測到射頻功率放大器關閉時,其匹配電阻不生效。

    對于各個電路和具體的增益控制方法的介紹,可參見前面的實施例的描述,此處不再詳述。應理解,說明書通篇中提到的“一個實施例”或“一實施例”意味著與實施例有關的特定特征、結構或特性包括在本申請的至少一個實施例中。因此,在整個說明書各處出現(xiàn)的“在一個實施例中”或“在一實施例中”未必一定指相同的實施例。此外,這些特定的特征、結構或特性可以任意適合的方式結合在一個或多個實施例中。應理解,在本申請的各種實施例中,上述各過程的序號的大小并不意味著執(zhí)行順序的先后,各過程的執(zhí)行順序應以其功能和內(nèi)在邏輯確定,而不應對本申請實施例的實施過程構成任何限定。上述本申請實施例序號為了描述,不實施例的優(yōu)劣。需要說明的是,在本文中,術語“包括”、“包含”或者其任何其他變體意在涵蓋非排他性的包含,從而使得包括一系列要素的過程、方法、物品或者裝置不包括那些要素,而且還包括沒有明確列出的其他要素,或者是還包括為這種過程、方法、物品或者裝置所固有的要素。在沒有更多限制的情況下,由語句“包括一個……”限定的要素,并不排除在包括該要素的電路中還存在另外的相同要素。以上所述,為本申請的實施方式,但本申請的保護范圍并不局限于此。射頻功率放大器地用于多種有線和無線應用中,包括 CATV,ISM,WLL,PCS,GSM,CDMA 和 WCDMA 等各種頻段。

    本發(fā)明實施例的技術方案具有以下有益效果:增加輔次級線圈可以在不影響初級線圈和主次級線圈的前提下增加輸入到輸出的能量耦合路徑,減小耦合系數(shù)k值較小對阻抗變換的影響。根據(jù)初級線圈和主次級線圈的k值等參數(shù),選擇合適的輔次級線圈的大小和k值可以有效提高功率合成變壓器的阻抗變換工作頻率范圍,降低功率合成變壓器損耗。此外,將功率合成變壓器的主次級線圈和輔次級線圈以及匹配濾波電路協(xié)同設計,能夠進一步提高射頻功率放大器的寬帶阻抗變換和濾波性能。附圖說明圖1是本發(fā)明實施例中的一種射頻功率放大器的電路結構圖;圖2是本發(fā)明實施例中的另一種射頻功率放大器的電路結構圖;圖3是本發(fā)明實施例中的又一種射頻功率放大器的電路結構圖;圖4是本發(fā)明實施例中的再一種射頻功率放大器的電路結構圖;圖5是本發(fā)明實施例中的又一種射頻功率放大器的電路結構圖;圖6是本發(fā)明實施例中的再一種射頻功率放大器的電路結構圖;圖7是本發(fā)明實施例中的又一種射頻功率放大器的電路結構圖。具體實施方式如上所述,現(xiàn)有技術中,采用普通結構變壓器實現(xiàn)功率合成和阻抗變換的pa,只采用變壓器及其輸入輸出匹配電容。這種結構優(yōu)點是結構相對簡單,缺點是難以實現(xiàn)寬帶功率放大器。輸出匹配電路確定后功率放大器的輸出功率及效率也基本確定了但它 的增益平坦度并不一定滿足技術指標的要求。江蘇短波射頻功率放大器經(jīng)驗豐富

隨著無線通信/雷達通信系統(tǒng)的發(fā)展對固態(tài)功率放大器提出了新 的要求:大功率輸出、高效率、高線性度、高頻率.福建超寬帶射頻功率放大器系列

    第四mos管的漏級與第五mos管的源級連接,第四mos管的源級接地,第五mos管的柵級連接第九電容的端,第九電容的第二端接地。其中,第四mos管t4和第五mos管t5的器件尺寸一樣,第二mos管t2與第四mos管t4的器件尺寸之比為2:5。在一個可能的示例中,輸出匹配電路106包括:第四電感l(wèi)4、第五電感l(wèi)5、第十電容c10和第十一電容c11,其中:第四電感的端和第五電感的端連接第五mos管的漏級,第四電感的第二端連接第二電壓信號,第十電容的端連接第二電壓信號,第十電容的第二端接地,第五電感的第二端連接第十一電容的端,第十一電容的第二端接地,第十一電容兩端的電壓為輸出電壓。在一個可能的示例中,射頻功率放大器電路還包括:偏置電路,用于響應于微處理器發(fā)出的第三控制信號,增加自身的漏級電流和自身的柵級電壓,實現(xiàn)射頻功率放大器電路處于非負增益模式;還用于響應于第四控制信號,降低自身的漏級電流和自身的柵級電壓,實現(xiàn)射頻功率放大器電路處于負增益模式;第二偏置電路,用于響應于微處理器發(fā)出的第五控制信號,增加自身的漏級電流和自身的柵級電壓,實現(xiàn)射頻功率放大器電路處于非負增益模式;還用于響應于第六控制信號,降低自身的漏級電流和自身的柵級電壓。福建超寬帶射頻功率放大器系列