上海射頻功率放大器制定

來源: 發(fā)布時間:2022-06-30

    本申請實施例涉及但不限于射頻前端電路,尤其涉及一種射頻功率放大器電路及增益控制方法。背景技術:射頻前端系統(tǒng)中的功率放大器(poweramplifier,pa)一般要求發(fā)射功率可調,當pa之前射頻收發(fā)器的輸出動態(tài)范圍有限時,就要求功率放大器增益高低可調節(jié)。在廣域低功耗通信的應用場景中,對射頻功率放大器電路的增益可調要求變得更突出,其動態(tài)范圍要達到35~40db,并出現負增益的需求模式。相關技術中通常通過反饋電路提供的負反饋來對增益進行調節(jié),但是反饋電路只能增加或減少增益,而不能實現負增益,無法滿足射頻功率放大器電路的負增益需求。技術實現要素:有鑒于此,本申請實施例提供一種射頻功率放大器電路及增益控制方法。本申請實施例的技術方案是這樣實現的:本申請實施例提供一種射頻功率放大器電路,應用于終端,包括:依次連接的可控衰減電路、輸入匹配電路、驅動放大電路、級間匹配電路、功率放大電路和輸出匹配電路,與所述驅動放大電路跨接的反饋電路;所述可控衰減電路,用于根據所述終端中微處理器發(fā)送的模式控制信號,實現射頻功率放大器電路的負增益模式與非負增益模式之間的切換;所述輸入匹配電路。阻抗匹配,關系到功率放大器的穩(wěn)定性、增益;輸出功率、帶內平坦度、噪聲、諧波、駐波、線性等一系列指標 。上海射頻功率放大器制定

    以對輸入至功率合成變壓器的信號進行對應的匹配濾波處理。在具體實施中,子濾波電路可以包括電容c1,電容c1的端可以與功率合成變壓器的輸入端以及功率放大單元的輸入端耦接,第二端可以接地。在本發(fā)明實施例中,為提高諧波濾波性能,子濾波電路還可以包括電感l(wèi)1,電感l(wèi)1可以設置電容c1的第二端與地之間。參照圖2,給出了本發(fā)明實施例中的另一種射頻功率放大器的電路結構圖。圖2中,子濾波電路包括電感l(wèi)1以及電容c1,電感l(wèi)1串聯在電容c1的第二端與地之間。在具體實施中,第二子濾波電路可以包括第二電容c2,第二電容c2的端可以與功率合成變壓器的第二輸入端以及功率放大單元的第二輸入端耦接,第二端可以接地。在本發(fā)明實施例中,為提高諧波濾波性能,第二子濾波電路還可以包括第二電感l(wèi)2,第二電感l(wèi)2可以設置第二電容c2的第二端與地之間。繼續(xù)參照圖2,第二子濾波電路包括第二電感l(wèi)2以及第二電容c2,第二電感l(wèi)2串聯在第二電容c2的第二端與地之間。在具體實施中,串聯電感的到地電容和該電感的諧振頻率可以在功率放大單元的二次諧波頻率附近。也就是說,當子濾波電路包括電容c1以及電感l(wèi)1時,電容c1與電感l(wèi)1的諧振頻率在功率放大單元的二次諧波頻率附近。相應地。上海EMC射頻功率放大器系列根據晶體管的增益斜率和放大器增益要求,確定待綜合匹配網絡的衰減斜 率、波紋、帶寬,并導出其衰減函數。

    實現射頻功率放大器電路處于負增益模式;其中,偏置電路與驅動放大電路連接,第二偏置電路與功率放大電路連接。其中,如圖7所示,偏置電路1020包括:第二mos管t2、第三mos管t3、第六mos管t6、電流源ib、電壓源vg、第六電阻r6、第七電阻r7、第八電阻r8、第九電阻r9、第二電容c2、第七電容c7、第十二電容c12、第十三電容c13。第二mos管的漏極電流偏置電路由電流源、第六mos管、第六電阻、第七電阻和第十二電容按照圖7所示連接而成。第六電阻、第七電阻和第十二電容組成的t型網絡,可以起到隔離輸入信號的作用。第二mos管的寬長比w/l是第六mos管的寬長比的c(c遠大于1)倍,因此第二mos管的漏極偏置電流近似為電流源的c倍,實現了電流放大。電流源存在多個可調節(jié)檔位,通過微處理器發(fā)出的第三控制信號和第四控制信號,控制電流源檔位的切換,可切換第二mos管的漏極電流,從而調節(jié)驅動放大電路的放大倍數。第三mos管t3的柵極電壓偏置電路由電壓源vg、第八電阻r8、第九電阻r9和第十三電容c13按照圖7所示連接而成。第八電阻、第九電阻和第十三電容組成的t型網絡,可起到隔離第三mos管柵極的射頻電壓擺幅的作用。電壓源存在多個可調節(jié)檔位。

    nmos管mn07的漏極和nmos管mn08的漏極分別連接第三變壓器t03的原邊。在第二主體電路率放大器中源放大器的柵極與激勵放大器的輸出端連接,功率放大器柵放大器的漏極連接第四變壓器的原邊。如圖3所示,nmos管mn13的柵極、nmos管mn14的柵極為功率放大器的輸入端,nmos管mn13的柵極、nmos管mn14的柵極與激勵放大器的輸出端連接。nmos管mn15的漏極和nmos管mn16的漏極分別連接第四變壓器t04的原邊。nmos管mn05的源極、nmos管mn06的源極接地,nmos管mn13的源極、nmos管mn14的源極接地。nmos管mn07的柵極和nmos管mn08的柵極通過電容c06和電感l(wèi)02接地,nmos管mn15的柵極和nmos管mn16的柵極通過電容c13和電感l(wèi)05接地。第三變壓器t02原邊的中端通過電感l(wèi)03接電源電壓vdd,第三變壓器t02原邊的中端還連接接地電容c08。第四變壓器t04原邊的中端通過電感l(wèi)06接電源電壓vdd,第四變壓器t04原邊的中端還連接接地電容c15。本申請實施例提供的高線性射頻功率放大器,通過自適應動態(tài)偏置電路和兩個主體電路,不提高了射頻功率放大器的線性度,還提高了射頻功率放大器的輸出功率。圖4示例性地示出了本申請實施例提供的高線性射頻功率放大器中自適應動態(tài)偏置電路對應的偏置電壓曲線圖。由于功率放大器的源和負載都是50歐姆,輸入匹配電路和輸出匹配 電路主要是對一端是50歐姆。

    因為設計的可控衰減電路中電感的品質因數q較低,因此頻選特性不明顯,頻率響應帶寬較寬,帶來的射頻信號的插入損耗相對較小。負增益模式下的回波損耗和頻率響應帶寬也能滿足要求。假設fh為上限頻率,fl為下限頻率,fo為中心頻率;且有:fh=900mhz,fl=600mhz,fo=800mhz,回波損耗大于15db,頻率響應的帶寬可達到300mhz以上,相對帶寬可達到(fh-fl)/fo=(900-600)/800=%。下面再提供一種采用可控衰減電路和輸入匹配電路的結構,如圖5b所示,在該結構中的可控衰減電路的電阻r1可以變?yōu)殚_關sw2,增強了對射頻輸入端口rfin的esd保護能力。本申請實施例提供的技術方案的有益效果在于:通過在信號的輸入端設計可控衰減電路,在實現功率放大器增益負增益的同時,對高增益模式性能的影響很小,并且加強了對rfin端口的esd保護。該電路結構簡潔,對芯片面積占用小,能降低硬件成本。在本申請實施例提供的射頻功率放大器電路中,反饋電路中可以用于切換的電阻有多種,例如當射頻功率放大器電路需要實現三檔增益模式:高增益30db左右,低增益15db左右,負增益-10db左右。此時,反饋電路如圖6所示,c51、c52、c53和c54是1pf~2pf范圍的電容。電阻r53大于r51大于r52。甲類工作狀態(tài):功放大器在信號周期內始終存在工作電流,即導通角0為360度。福建EMC射頻功率放大器

輸入/輸出駐波表示放大器輸入端阻抗和輸出端阻抗與系統(tǒng)要求阻抗(50Q)的 匹配程度。上海射頻功率放大器制定

    顯示單元404可用于顯示由用戶輸入的信息或提供給用戶的信息以及終端的各種圖形用戶接口,這些圖形用戶接口可以由圖形、文本、圖標、視頻和其任意組合來構成。顯示單元404可包括顯示面板,可選的,可以采用液晶顯示器(lcd,liquidcrystaldisplay)、有機發(fā)光二極管(oled,organiclight-emittingdiode)等形式來配置顯示面板。進一步的,觸敏表面可覆蓋顯示面板,當觸敏表面檢測到在其上或附近的觸摸操作后,傳送給處理器408以確定觸摸事件的類型,隨后處理器408根據觸摸事件的類型在顯示面板上提供相應的視覺輸出。雖然在圖4中,觸敏表面與顯示面板是作為兩個的部件來實現輸入和輸入功能,但是在某些實施例中,可以將觸敏表面與顯示面板集成而實現輸入和輸出功能。移動終端還可包括至少一種傳感器405,比如光傳感器、運動傳感器以及其他傳感器。具體地,光傳感器可包括環(huán)境光傳感器及接近傳感器,其中,環(huán)境光傳感器可根據環(huán)境光線的明暗來調節(jié)顯示面板的亮度,接近傳感器可在終端移動到耳邊時,關閉顯示面板和/或背光。作為運動傳感器的一種,重力加速度傳感器可檢測各個方向上(一般為三軸)加速度的大小,靜止時可檢測出重力的大小及方向,可用于識別手機姿態(tài)的應用。上海射頻功率放大器制定