發(fā)貨地點(diǎn):浙江省寧波市
發(fā)布時(shí)間:2025-04-10
QCL激光器,得益于先進(jìn)的量子級(jí)聯(lián)技術(shù),實(shí)現(xiàn)了前所未有的高功率輸出,確保了激光的穩(wěn)定性和可靠性。這一技術(shù)突破,不僅提升了激光器的轉(zhuǎn)換效率,更將光譜線寬壓縮至極窄范圍,為用戶帶來了前所未有的度和高效性。與此同時(shí),我們積極響應(yīng)國(guó)家國(guó)產(chǎn)化號(hào)召,通過自主研發(fā)與自主生產(chǎn),大幅度降低了成本,提升了產(chǎn)品的性價(jià)比,讓用戶能夠以更加實(shí)惠的價(jià)格,享受到的激光解決方案。
QCL激光器的又一大亮點(diǎn)。無論是光譜分析、材料加工,還是其他需要高功率激光支持的應(yīng)用場(chǎng)景,我們的QCL激光器都能輕松應(yīng)對(duì),展現(xiàn)出強(qiáng)大的應(yīng)用潛力和市場(chǎng)競(jìng)爭(zhēng)力。 在材料科學(xué)領(lǐng)域,可調(diào)諧激光器可以用于精確控制材料的加工和改性過程。江西半導(dǎo)體QCL激光器封裝
當(dāng)紅外輻射的能量與氣體分子振動(dòng)躍遷所需的能量相匹配時(shí),氣體分子會(huì)吸收特定波長(zhǎng)的紅外光,導(dǎo)致透過光的強(qiáng)度減弱,從而形成特征吸收峰。輻射光子的能量與分子振動(dòng)躍遷的能量差相等。l分子振動(dòng)伴隨偶極矩的變化(紅外活性)。分子在紅外光譜中表現(xiàn)出基頻、倍頻和組合頻吸收峰。l每種氣體分子具有獨(dú)特的紅外吸收譜帶,這種特征吸收峰可以用來識(shí)別氣體種類。絕大多數(shù)氣態(tài)化學(xué)物質(zhì)在中紅外光譜區(qū)(≈2-25m)都顯示出基本的振動(dòng)吸收帶,這些基本帶對(duì)光的吸收提供了一種幾乎通用的檢測(cè)手段。光學(xué)技術(shù)的主要特征是對(duì)痕量氣體的非侵入式原位檢測(cè)能力。目前中紅外激光在定量痕量氣體檢測(cè)中的應(yīng)用必將代替近紅外成為下一代高精度的選擇。進(jìn)入21世紀(jì)全球環(huán)境問題日益突出,各國(guó)都在在努力減少溫室氣體排放。二氧化碳(CO2)通常被稱為溫室氣體,但其他使全球環(huán)境惡化的氣體還包括二氧化硫(SO2)和二氧化氮(NO2)。此外,在氣體泄漏檢測(cè)和性氣體的集中監(jiān)控是預(yù)防災(zāi)難中激光法可以采取有效報(bào)警措施從而可以避免風(fēng)險(xiǎn)于災(zāi)難之前。激光吸收光譜法是檢測(cè)微量氣體的方法之一。它使用分布式反饋激光二極管(DFB-LD)檢測(cè)某種氣體,該二極管具有特定于該氣體的光吸收波長(zhǎng)。 江西半導(dǎo)體QCL激光器封裝DFB激光器由于具有良好的單色性,窄線寬特性和頻率調(diào)諧特性。
在工業(yè)檢測(cè)方面,量子級(jí)聯(lián)激光器以其小型化和集成化的設(shè)計(jì),完美適應(yīng)了現(xiàn)代工業(yè)的需求。它能夠以更低的能耗和更小的體積完成復(fù)雜的檢測(cè)任務(wù)。這對(duì)于降低企業(yè)的運(yùn)營(yíng)成本,提高生產(chǎn)效率,具有重要的推動(dòng)作用。許多企業(yè)通過引入量子級(jí)聯(lián)激光器技術(shù),成功減少了設(shè)備占用空間,并提升了生產(chǎn)線的自動(dòng)化程度。綜合來看,量子級(jí)聯(lián)激光器憑借其高效、靈活和經(jīng)濟(jì)的特性,正逐步改變各行各業(yè)的技術(shù)格局。無論是在環(huán)境監(jiān)測(cè)、醫(yī)療成像還是工業(yè)檢測(cè)領(lǐng)域,量子級(jí)聯(lián)激光器都為客戶提供了切實(shí)可行的解決方案,幫助企業(yè)提高效率、降低成本,從而在競(jìng)爭(zhēng)激烈的市場(chǎng)環(huán)境中脫穎而出。隨著技術(shù)的不斷進(jìn)步和應(yīng)用范圍的擴(kuò)大,量子級(jí)聯(lián)激光器的未來將更加光明,值得行業(yè)內(nèi)外的共同關(guān)注。
QCL激光器的基本結(jié)構(gòu)包括FP-QCL、DFB-QCL和ECqcL。增益介質(zhì)顯示為灰色,波長(zhǎng)選擇機(jī)制為藍(lán)色,鍍膜面為橙色,輸出光束為紅色。1.簡(jiǎn)單的結(jié)構(gòu)是F-P腔激光器(FP-QCL)。在F-P結(jié)構(gòu)中,切割面為激光提供反饋,有時(shí)也使用介質(zhì)膜以優(yōu)化輸出。2.第二種結(jié)構(gòu)是在QC芯片上直接刻分布反饋光柵。這種結(jié)構(gòu)(DFB-QCL)可以輸出較窄的光譜,但是輸出功率卻比FP-QCL結(jié)構(gòu)低很多。通過大范圍的溫度調(diào)諧,DFB-QCL還可以提供有限的波長(zhǎng)調(diào)諧(通過緩慢的溫度調(diào)諧獲得10~20cm-1的調(diào)諧范圍,或者通過快速注進(jìn)電流加熱調(diào)諧獲得2~3cm-1的范圍)。3.第三種結(jié)構(gòu)是將QC芯片和外腔結(jié)合起來,形成ECqcL。這種結(jié)構(gòu)既可以提供窄光譜輸出,又可以在QC芯片整個(gè)增益帶寬上(數(shù)百cm-1)提供快調(diào)諧(速度超過10ms)。由于ECqcL結(jié)構(gòu)使用低損耗元件,因此它可在便攜式電池供電的條件下高效運(yùn)作。 光譜技術(shù)在氣體檢測(cè)領(lǐng)域有著廣泛的應(yīng)用,其中OF-CEAS、CRDS和TDLAS是三種主要技術(shù)。
近年來,激光技術(shù)的快速發(fā)展為各行業(yè)帶來了前所未有的機(jī)遇。作為激光領(lǐng)域的一項(xiàng)重大突破,量子級(jí)聯(lián)激光驅(qū)動(dòng)器的問世,將為用戶解決一系列實(shí)際問題,推動(dòng)高科技產(chǎn)品的創(chuàng)新與應(yīng)用。量子級(jí)聯(lián)激光驅(qū)動(dòng)器是一種新型激光器,能夠在更的波長(zhǎng)范圍內(nèi)輸出高效激光,相比傳統(tǒng)激光器,其能量轉(zhuǎn)換效率更高,體積更小,且具備更強(qiáng)的穩(wěn)定性。這些優(yōu)勢(shì)使得量子級(jí)聯(lián)激光驅(qū)動(dòng)器在多個(gè)應(yīng)用領(lǐng)域展現(xiàn)出廣闊的前景。首先,在通信領(lǐng)域,量子級(jí)聯(lián)激光驅(qū)動(dòng)器能夠有效提升數(shù)據(jù)傳輸速率和可靠性。隨著5G和未來6G網(wǎng)絡(luò)的發(fā)展,對(duì)高速數(shù)據(jù)傳輸?shù)男枨笕找嬖黾。量子?jí)聯(lián)激光驅(qū)動(dòng)器的高頻率輸出能力,為光纖通信提供了強(qiáng)有力的支持,幫助運(yùn)營(yíng)商實(shí)現(xiàn)更低延遲和更高帶寬的網(wǎng)絡(luò)服務(wù)。其次,在醫(yī)療領(lǐng)域,量子級(jí)聯(lián)激光驅(qū)動(dòng)器的高精度激光輸出使得其在醫(yī)療成像和中具有重要應(yīng)用潛力。通過高分辨率成像,醫(yī)生能夠更有效地進(jìn)行疾病的早期診斷,尤其是在檢測(cè)和眼科方面,量子級(jí)聯(lián)激光驅(qū)動(dòng)器為患者帶來了更精細(xì)的方案,極大提升了效果。 TDLAS技術(shù)有高效、選擇高、響應(yīng)快、適應(yīng)性強(qiáng)等優(yōu)點(diǎn),通過追蹤分子的吸收光譜獲得特征參數(shù)的重要手段。江西半導(dǎo)體QCL激光器封裝
可調(diào)諧半導(dǎo)體激光器調(diào)制光譜技術(shù)和二氧化碳檢測(cè)技術(shù)可以測(cè)得二氧化碳?xì)怏w濃度值。江西半導(dǎo)體QCL激光器封裝
傳統(tǒng)的半導(dǎo)體激光器,工作原理都是依靠半導(dǎo)體材料中導(dǎo)帶的電子和價(jià)帶中的空穴復(fù)合而激發(fā)光子,其激射波長(zhǎng)由半導(dǎo)體材料的禁帶寬度所決定,由于受禁帶寬度的限制,使得半導(dǎo)體激光器難以發(fā)出中遠(yuǎn)紅外以及太赫茲波段的激光。自然界不多的對(duì)應(yīng)能出射中遠(yuǎn)紅外的半導(dǎo)體材料-鉛鹽系材料,其只能在低溫下工作(低于77K),且輸出功率極低,為微瓦級(jí)別。為了使半導(dǎo)體激光器也能激射中遠(yuǎn)紅外以及太赫茲波段的光,科研人員跳出了基于半導(dǎo)體材料p-n結(jié)發(fā)光的理論,提出了量子級(jí)聯(lián)激光器的構(gòu)想。量子級(jí)聯(lián)激光器的工作原理為電子在半導(dǎo)體材料導(dǎo)帶的子帶間躍遷和聲子共振輔助隧穿從而產(chǎn)生光放大,其出射波長(zhǎng)由導(dǎo)帶的子帶間的能量差所決定,和半導(dǎo)體材料的禁帶寬度無關(guān),因此可以通過設(shè)計(jì)量子阱層的厚度來實(shí)現(xiàn)波長(zhǎng)的控制。如圖1.(A)傳統(tǒng)半導(dǎo)體激光器其發(fā)光原理(B)QCL發(fā)光原理。 江西半導(dǎo)體QCL激光器封裝